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Modelling single-vehicle, single-rider motorcycle crash injury
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and Transportation (CAIT), Rutgers, The State University of New Jersey, Piscataway, NJ, USA

ABSTRACT

Motorcycles represent an increasing proportion of traffic fatalities in
the United States, accounting for more than 12.7% of the total traffic
casualties within 2005–2014. Specifically, in North Carolina,
motorcycles comprise less than 1% of vehicles involved in crashes
but account for more than 7% of total fatalities, representing a
top state in the United States. This study tries to investigate the
motorcycle crashes in North Carolina more in depth. In doing so,
five years’ (2009–2013) worth of crash data was obtained from the
Federal Highway Administration’s Highway Safety Information
System database. A partial proportional odds (PPO) logistic
regression model was developed to examine the influence of the
explanatory variable on the ordered dependent variable, that is,
injury severity. Moreover, two other popular ordered-response
models, that is, proportional odds and non-proportional odds
models, as well as one similar unordered-response model, that is,
multinomial logit model, were also developed to evaluate their
performances compared to the PPO model. Older riders, DUI
riding, not wearing helmets, crashes during summer and
weekends, darkness, crashes with fixed objects, reckless riding,
and speeding were found to increase the severity of injuries. In
contrast, younger riders, winter season, adverse weather
condition, and wet surface were associated with lower injury
severities. Furthermore, crashes in rural areas, overturn/rollover,
and crashes happened while negotiating a curve showed
fluctuating effects of injury severity. According to two information
criteria calculated for all three developed models fitted to the
same data, the PPO model was found to outperform the other
models and provide more reliable results. Based on the obtained
average direct pseudo-elasticities, this study determines the effect
of the various identified variables and develops several safety
countermeasures as a resource for policy-makers to prevent or
mitigate the severity of motorcycle crashes in North Carolina.
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1. Introduction

Motorcycles represent an increasing proportion of traffic fatalities in the United States. In

a nationwide scale, per a query of 10 years (2005–2014) of crash data from the Fatality

Analysis Reporting System database, an average of 4573 fatalities occurred each year
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involving motorcyclists, accounting for more than 12.7% of the total traffic casualties for

that period (National Highway Traffic Safety Administration [NHTSA], 2016). The most

recent data from the NHTSA revealed that in 2013 and per vehicle mile travelled, the

national fatality rate associated with motorcycles was 26 times that of passenger cars

(NHTSA, 2015). In that particular year, the state of North Carolina was ranked fourth

in the nation in terms of total motorcycle rider fatalities. With many possible factors con-

tributing to motorcycle collisions (e.g. infrastructure and environmental factors, motor-

cycle rider factors, and motorcycle factors), it is incumbent upon traffic safety

researchers and policy-makers to get a clear and deeper understanding of the most signifi-

cant contributing factors. This effort is most appropriately accomplished through further

analysis and using proper tools to develop more effective safety countermeasures.

Many studies have already addressed the severity of crashes involved motorcycles.

Jimenez, Bocarejo, Zarama, and Yerpez (2015) developed accident prototypical scenarios

to investigate 400 police crash records to find patterns in motorcycle-involved crashes in

Colombia. These crashes fell into three categories: solo motorcycle crashes, motorcycle–

vehicle crashes, and motorcycle–pedestrian crashes. A lack of experience, wider roads

with higher speed limits, and poor infrastructure maintenance were found to increase

the likelihood of motorcycle-involved crashes. In another study, Maistros, Schneider,

and Savolainen (2014) conducted an analysis to compare contributing factors between

alcohol-related single-vehicle motorcycle and car crashes. In developing mixed logit

models for motorcycle riders and passenger car drivers, it was found that the presence

of horizontal curves, speeding, and neglecting helmet and seatbelt use increased the sever-

ity of motorcycle crashes. Shaheed and Gkritza (2014) found that roadway surface con-

ditions, lighting conditions, speed limit, and the use of a helmet significantly influenced

crash severity outcomes. Haque, Chin, and Debnath (2012) employed a log-linear

model to evaluate multi-vehicle motorcycle crashes in Singapore and found that lighting

and road surface conditions affect the probability of motorcycle-involved crashes. The

results of a study conducted by de Rome and Senserrick (2011) revealed that driver age,

roadway surface conditions, and horizontal curves contributed significantly to motorcycle

crash severity. Geedipally, Lord, and Dhavala (2012) employed a multinomial logistic

regression model to investigate various contributing factors associated with motorcycle

crashes in Texas. Based on the obtained results, factors such as alcohol, gender, lighting

conditions, and the presence of horizontal and vertical curves significantly affected the

severity of motorcycle crashes in urban areas. Teoh and Campbell (2010) explored a

strong relationship between motorcycle type and motorcycle rider fatalities. Houston

(2007) showed that motorcycle helmet laws mitigate the rates of young motorcyclist fatal-

ities by 31%. Schneider, Savolainen, and Moore (2010) evaluated the effect of horizontal

curvatures on single-vehicle motorcycle crashes on rural two-lane highways using a nega-

tive binomial model. Based on their results, a short radius and insufficient length of a curve

significantly increased the frequency of motorcycle crashes.

In the motorcycle crash study domain, the nature of the type of injury is highly associ-

ated with the number of vehicles involved. In other words, several past studies (Geedipally

et al., 2012; Haque et al., 2012; Ivan, 2004; Jonsson, Ivan, & Zhang, 2007; Savolainen &

Mannering, 2007; Yau, 2004) asserted that separating motorcycle crash types into

single- and multi-vehicle crashes is advisable due to the different nature of crashes and

their causes. Moreover, according to previous studies (Savolainen & Mannering, 2007;
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Shaheed & Gkritza, 2014), multi-vehicle motorcycle crashes tend to be less severe than

single-vehicle crashes, which is the crash type upon which this paper focuses. The presence

of other pillion passengers in addition to the rider is another factor that will potentially

affect the injury severity of a crash. This study intends to develop a model for single-

vehicle, single-rider motorcycle crash injury severity to gain more reliable, additional

insight into the main cause of serious injuries to motorcyclists. Based on the above-men-

tioned arguments, the reason for setting such a limitation is to offset the possible effects

that the presence of other vehicles and riders have on motorcycle riders’ behaviour and

the resulting change in the injury outcome. More importantly, such segmentation of

motorcycle crashes increases the homogeneity of the crash data and increases the

reliability of the obtained findings.

2. Data

Five years (2009–2013) of crash records in North Carolina, obtained from the Federal

Highway Administration’s Highway Safety Information System (HSIS), were used. The

HSIS database is composed of four different sub-files, including Accident, Occupant,

Vehicle, and Roadway. Depending on the sub-files being linked together, variables such

as Case Number, Vehicle Number, County, Route Number, and Milepost might be of

use. For a complete description of the linking process, readers are encouraged to refer

to the HSIS North Carolina Guidebook (Nujjetty, Mohamedshah, & Council, 2014).

Given the scope of this study, only those single-vehicle motorcycle crashes without any

riders other than the operator (6545 records) were selected for final analysis.

The HSIS database uses the five-level injury severity of (1) fatality, (2) incapacitating

injury (A-injury), (3) non-incapacitating injury (B-injury), (4) possible injury (C-

injury), and (5) no injury. Based on this categorization, 234 (3.6%) fatal crashes, 562

(8.6%) incapacitating injury, 3451 (52.7%) non-incapacitating injury, 1545 (23.6%) poss-

ible injury, and 753 (11.5%) no injury crashes were found to compose the crash dataset.

These categorizations, along with the variables considered in this study, are cross-tabu-

lated and presented in Table 1.

3. Method

3.1. Econometric model

There is an extensive body of literature on the application of statistical modelling in trans-

portation science (e.g. Baireddy, Pour-Rouholamin, Zhou, & Qi, 2017; Christensen,

Sharifi, & Chen, 2013; Ghasemi, Jalayer, Pour-Rouholamin, Nowak, & Zhou, 2016;

Pour-Rouholamin & Zhou, 2016c; Shafabakhsh, Pour-Rouholamin, & Motamedi, 2012;

Sharifi, Stuart, Christensen, & Chen, 2015; Soltani-Sobh, Heaslip, Bosworth, & Barnes,

2015; Soltani-Sobh, Heaslip, Bosworth, Barnes, & Yook, 2016). Over the past years,

numerous disaggregate modelling approaches have been employed to quantify the effect

of several contributing factors on various levels of injury severity. Given the ordered

nature of the injury severity in crashes (representing an ordinal outcome), these methodo-

logical approaches generally fall into two main categories (based on whether this nature is

considered or not): ordered-response models and unordered-response models.
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Table 1. Distribution of injury severity by explanatory variables.

Explanatory variable Fatality A-injury B-injury C-injury PDO Total

Total 234 3.6% 562 8.6% 3451 52.7% 1545 23.6% 753 11.5% 6545
Motorcyclist characteristics
Age
Younger rider (Less than 24) 25 1.9% 102 7.9% 686 52.8% 319 24.6% 167 12.9% 1299
Middle-aged rider (25 to 64) 185 3.8% 423 8.6% 2598 52.8% 1158 23.5% 560 11.4% 4924
Older rider (65 and over) 24 7.5% 37 11.5% 167 51.9% 68 21.1% 26 8.1% 322

Gender
Male 221 3.7% 528 8.8% 3157 52.5% 1395 23.2% 716 11.9% 6017
Female 13 2.5% 34 6.4% 294 55.7% 150 28.4% 37 7.0% 528

DUI driving?
No 154 2.7% 431 7.6% 3003 52.6% 1412 24.8% 704 12.3% 5704
Yes 80 9.5% 131 15.6% 448 53.3% 133 15.8% 49 5.8% 841

Helmet used?
Yes 213 3.5% 503 8.3% 3193 52.6% 1444 23.8% 714 11.8% 6067
No 21 4.4% 59 12.3% 258 54.0% 101 21.1% 39 8.2% 478

Temporal variables
Season
Spring 73 3.6% 165 8.2% 1067 52.8% 495 24.5% 221 10.9% 2021
Summer 88 3.8% 228 9.9% 1284 55.9% 471 20.5% 225 9.8% 2296
Autumn 59 3.6% 132 8.2% 797 49.3% 409 25.3% 220 13.6% 1617
Winter 14 2.3% 37 6.1% 303 49.6% 170 27.8% 87 14.2% 611

Day of week
Weekday 121 3.2% 292 7.8% 1944 51.8% 924 24.6% 469 12.5% 3750
Weekend 113 4.0% 270 9.7% 1507 53.9% 621 22.2% 284 10.2% 2795

Time of day
Morning 39 3.6% 79 7.3% 542 50.4% 267 24.8% 148 13.8% 1075
Afternoon 73 2.5% 248 8.4% 1586 54.0% 711 24.2% 319 10.9% 2937
Evening 85 4.3% 179 9.1% 1031 52.3% 454 23.0% 221 11.2% 1970
Night 37 6.6% 56 9.9% 292 51.9% 113 20.1% 65 11.5% 563

Crash variables
Type of setting
Urban 34 2.5% 49 3.5% 763 55.1% 376 27.1% 163 11.8% 1385
Rural 200 3.9% 513 9.9% 2688 52.1% 1169 22.7% 590 11.4% 5160

Weather condition
Clean/cloudy 231 3.7% 551 8.7% 3351 53.0% 1479 23.4% 716 11.3% 6328
Adverse 3 1.4% 11 5.1% 100 46.1% 66 30.4% 37 17.1% 217

Surface condition
Dry 227 3.7% 542 8.9% 3220 53.0% 1413 23.2% 679 11.2% 6081
Wet 5 1.4% 17 4.7% 184 50.8% 97 26.8% 59 16.3% 362

Lighting condition
Daylight 137 3.0% 368 8.1% 2444 53.7% 1104 24.3% 499 11.0% 4552
Dawn/dusk 4 1.6% 24 9.5% 131 51.8% 53 20.9% 41 16.2% 253
Dark – lit 21 6.4% 16 4.9% 168 51.2% 88 26.8% 35 10.7% 328
Dark – not lit 72 5.1% 154 11.0% 700 50.0% 298 21.3% 177 12.6% 1401

Intersection related?
Yes 21 3.0% 43 6.1% 375 53.1% 180 25.5% 87 12.3% 706
No 213 3.6% 519 8.9% 3076 52.7% 1365 23.4% 666 11.4% 5839

Accident type
Animal 9 1.4% 37 5.9% 302 47.9% 148 23.5% 135 21.4% 631
Fixed-object 129 7.5% 209 12.1% 848 49.0% 375 21.7% 169 9.8% 1730
Overturn/rollover 66 2.4% 240 8.6% 1568 56.1% 652 23.3% 267 9.6% 2793
Run-off-the-road 27 3.4% 45 5.7% 403 51.4% 214 27.3% 95 12.1% 784

Contributing factor
Overcorrected/oversteered 9 2.0% 26 5.8% 252 55.9% 118 26.2% 46 10.2% 451
Reckless 50 4.0% 125 9.9% 713 56.4% 268 21.2% 108 8.5% 1264
Speeding 89 5.7% 183 11.6% 793 50.4% 338 21.5% 170 10.8% 1573

Roadway functional classification
Arterial 66 2.8% 148 6.3% 1271 54.4% 582 24.9% 271 11.6% 2338
Collector 79 3.7% 209 9.8% 1067 50.0% 514 24.1% 266 12.5% 2135
Local 89 4.3% 205 9.9% 1113 53.7% 449 21.7% 216 10.4% 2072

Locality

(Continued )
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In this study, the dependent variable, the severity given a motorcycle crash has hap-

pened, can be modelled by considering the ordered nature of crash severity and using

ordered-response models. In these models, the dependent variable retains an ordinal

structure with at least three categories that have been arranged based on their importance

in defining the outcome. For instance, in severity analysis using these models, fatality is

given the highest priority due to its severe nature, and the other severity levels should

be sorted in descending order; that is, incapacitating injury, non-incapacitating injury,

possible injury, and no injury. There are three ordered-response models that have pre-

viously been used by various studies, called proportional odds (PO) model, non-pro-

portional odds (NPO) model, and partial proportional odds (PPO) model.

The difference between these three models lies in the approach to handling parallel line

assumption. According to this assumption in ordered-response models, which belongs to

ordinal odds, the effect of the explanatory variables entered in the model is assumed to be

constant across each ordinal category, and the only difference between the regression lines

is the cut-off point for the threshold. This causes regression lines that are parallel to each

other. If this assumption holds, the PO model is suggested. In reality, however, this

assumption is sometimes relaxed (Boes & Winkelmann, 2006), which necessitates the

use of NPO and PPO models. In the NPO model, it is assumed that all the explanatory

variables do vary across equations for different categories of the dependent variable.

However, the adoption of this assumption may, in turn, result in an unnecessary increase

in the number of calculated parameter estimates (i.e. coefficients), as not all the explana-

tory variables in the model will violate the parallel line assumption. This consideration led

to the emergence of PPOmodel that accounts for the fact that not every single explanatory

variable will violate the parallel line assumption.

Table 1. Continued.

Explanatory variable Fatality A-injury B-injury C-injury PDO Total

Commercial 22 1.9% 44 3.8% 646 56.0% 311 27.0% 130 11.3% 1153
Farms, woods, pastures 157 4.0% 393 9.9% 2035 51.2% 908 22.9% 478 12.0% 3971
Residential 53 3.9% 125 9.1% 740 53.9% 314 22.9% 142 10.3% 1374

Left shoulder width
No shoulder 40 3.2% 82 6.5% 663 52.9% 322 25.7% 147 11.7% 1254
1–3 ft 30 3.8% 78 10.0% 406 52.0% 180 23.0% 87 11.1% 781
4–6 ft 125 3.8% 315 9.6% 1704 52.1% 746 22.8% 382 11.7% 3272
7–9 ft 12 3.1% 25 6.6% 211 55.4% 89 23.4% 44 11.5% 381
10–13 ft 25 3.4% 55 7.5% 394 53.5% 184 25.0% 79 10.7% 737
Over 14 ft 2 1.7% 7 5.8% 73 60.8% 24 20.0% 14 11.7% 120

Right shoulder width
No shoulder 39 3.2% 81 6.6% 646 52.9% 310 25.4% 146 11.9% 1222
1–3 ft 31 4.0% 76 9.8% 399 51.4% 180 23.2% 90 11.6% 776
4–6 ft 126 3.9% 315 9.7% 1690 51.9% 746 22.9% 377 11.6% 3254
7–9 ft 12 3.2% 25 6.6% 208 55.2% 89 23.6% 43 11.4% 377
10–13 ft 22 2.8% 54 7.0% 427 55.2% 188 24.3% 83 10.7% 774
Over 14 ft 4 2.8% 11 7.7% 81 57.0% 32 22.5% 14 9.9% 142

Presence of median?
Yes 39 3.2% 65 5.4% 663 54.7% 310 25.6% 135 11.1% 1212
No 195 3.7% 497 9.3% 2788 52.3% 1235 23.2% 618 11.6% 5333

Number of lanes
Two 188 3.7% 486 9.6% 2629 52.1% 1162 23.0% 579 11.5% 5044
More than two 46 3.1% 76 5.1% 822 54.8% 383 25.5% 174 11.6% 1501

Roadway characteristic
Straight 70 2.2% 193 6.0% 1752 54.5% 838 26.1% 362 11.3% 3215
Curve 164 5.0% 369 11.2% 1694 51.5% 706 21.5% 356 10.8% 3289
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As mentioned earlier, the dependent variable in this study (i.e. crash severity) is cate-

gorized into five groups. Given this, let j denote the crash severity level (1 = no injury, 2 =

possible injury; 3 = non-incapacitating injury; 4 = incapacitating injury; 5 = fatality) and

let J represent the number of severity levels (here J = 5), where j = 1, 2, . . . , J − 1.

Table 2 shows the three models, their equations, how they differ from each other, and

the description of parameters.

Before fitting the model, it is necessary to test whether this assumption is valid. There

are several tests to examine the validity of this assumption, such as the likelihood ratio test,

the Wolfe Gould test, and the Brant test. In this study, a Brant (1990) test is proposed

before model estimation to determine whether any of the variables violates this assump-

tion. This test estimates the coefficients for the underlying binary logistic regressions and

examines the equality of all parameter estimates for individual variables using a chi-square

statistic. If the test statistic is statistically significant, the parallel line assumption is violated

for that particular variable.

3.2. Elasticity

The interpretation of the results from ordered-response models needs more attention, as

the sign and value of the bs do not always determine the direction and magnitude of the

effect of the intermediate levels for crash severity (Kaplan & Prato, 2012). In other words,

the estimated coefficients are not sufficient to determine the net change in the outcome

probabilities, given the change in the explanatory variables. The reason is that the marginal

effect of one specific variable depends on the parameter estimates of all other variables in

the model (Khorashadi, Niemeier, Shankar, & Mannering, 2005). Therefore, elasticities

can be used for interpretation purposes instead of single coefficients. It should be noted

that elasticities are applicable to continuous variables, whereas – given the nature of expla-

natory variables in this study that are dummy variables taking the value of 0 or 1 – direct

pseudo-elasticities can instead be used for each injury severity and each crash. This

measure is calculated as the change in the percentage of crash severity probability when

Table 2. Equations of the PO, NPO, and PPO models.

Model Equation

PO
Pr (Yi . j) =

exp (Xib− aj )

1+ [ exp (Xib− aj )]

NPO Pr (Yi . j) =
exp (Xibj − aj )

1+ [ exp (Xibj − aj )]

PPO Pr (Yi . j) =
exp (X1ib1 + X2ib2 − aj )

1+ [ exp (X1ib1 + X2ib2 − aj )]

Description of parameters
Yi Observed severity for crash i
b Vector of parameter estimations in PO model, holding parallel line assumption
bj Vector of parameter estimations in NPO model, relaxing parallel line assumption
b1 Vector of parameter estimations in PPO model, holding parallel line assumption
b2 Vector of parameter estimations in PPO model, relaxing parallel line assumption
Xi Vector of explanatory variables
X1i Vector of explanatory variables in PPO model, holding parallel line assumption
X2i Vector of explanatory variables in PPO model, relaxing parallel line assumption
aj Cut-off term for the threshold in the model
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the dummy variable is switched from 0 to 1, or vice versa. Direct pseudo-elasticity can be

computed as (Pour-Rouholamin & Jalayer, 2016):

EPr(Yi.j)
x jnk

=
Pr(Yi . j)[Given x jnk = 1]− Pr(Yi . j)[Given x jnk = 0]

Pr(Yi . j)[Given x jnk = 0]
,

where Pr(Yi . j) is defined by equations in Table 2 (whichever applies) and x jnk is the k-th

explanatory variable associated with the injury severity j for the individual crash n. The

average direct pseudo-elasticities can then be calculated for each injury severity to rep-

resent the whole dataset (Kim, Ulfarsson, Shankar, & Mannering, 2010).

4. Results and discussion

Before presenting the model estimation results using identified ordered-response models,

it is important to check the parallel line assumption to justify the choice among PO, NPO,

and PPOmodels. In doing so, a Brant test was conducted for both the entire model, as well

as for every single parameter separately. The results of this test indicated the violation of

this assumption for some variables, which necessitates developing a PPOmodel. Using the

PPO model, the effect of various explanatory variables presented in Table 1 is analysed,

and the corresponding parameter estimates obtained through the maximum likelihood

estimation method as well as average direct pseudo-elasticities are listed in Tables 3 and

4, respectively. As can be seen from Table 3, 17 categories of explanatory variables were

found to have a significant effect on the injury severity of drivers in single-vehicle,

single-rider motorcycle crashes in North Carolina. Among these 17 categories, 6 violated

parallel line assumption, showing a varying effect on different levels of severity. Therefore,

and per the PPO formulation, these 6 violating parameters have different parameter esti-

mates (or coefficients) across injury severity levels, while the remaining 11 variables have

the same parameter estimates across all severity levels and for various thresholds, showing

a linear effect (either increasing or decreasing the severity). It is worth noting that to make

a more parsimonious model, explanatory variables with a p-value of less than 0.10 on at

least one of the thresholds were kept in the final model. The Wald chi-square statistic of

556.38 with 35 degrees of freedom, which is substantially larger than the respective chi-

square values at any reasonable confidence level, demonstrates that the presence of

exogenous variables significantly improves the quality of the model’s estimation.

4.1. Model comparison

Two commonly used information criteria, Akaike Information Criterion (AIC) and Baye-

sian Information Criterion (BIC), were used to compare the models. At first, these values

for all three parsimonious models (PPO, NPO, and PO) are calculated and presented in

Table 5. A comparison of the calculated values for both AIC and BIC for all these three

models shows that the PPO models yield lower values for both information criteria, outper-

forming the other two models and providing a better fit.

It was also tried to validate the ordinal assumption of the crash injury severity as the

next step. In doing so, the crash data were used to develop the multinomial logit model

(MNL). The MNL model is very similar to the PPO model except it does not consider

INTERNATIONAL JOURNAL OF URBAN SCIENCES 7



the injury severity an ordinal outcome. AIC and BIC values for the MNL model were also

calculated and presented in the same table (Table 5). As can be seen, PPO also yields lower

values for both AIC and BIC criteria compared to the MNL model, meaning that the PPO

(an ordered model) outperforms the unordered (MNL) model and provides a better fit to

our data.

4.2. Motorcyclist characteristics

The motorcycle rider’s age is classified into three groups: younger rider (less than 24),

middle-aged rider (between 25 and 64), and older rider (65 and over). Having the

middle-aged rider as the reference (base) category, the study results showed the significant

effect of different levels of age on the injury outcome of the motorcycle rider. In other

Table 3. Parameter estimates (coefficients) for various thresholds for PPO model.

Explanatory variable Threshold 1 Threshold 2 Threshold 3 Threshold 4

Motorcyclist characteristics
Age
Younger rider (less than 24) −0.123** −0.123** −0.123** −0.123**
Older rider (65 and over) 0.402*** 0.402*** 0.402*** 0.402***

DUI driving?
Yes† 0.727*** 0.710*** 1.049*** 1.289***

Helmet used?
No 0.206** 0.206** 0.206** 0.206**

Temporal variables
Season
Summer 0.238*** 0.238*** 0.238*** 0.238***
Winter −0.221*** −0.221*** −0.221*** −0.221***

Day of week
Weekend 0.127*** 0.127*** 0.127*** 0.127***

Crash variables
Type of setting
Rural† −0.250** −0.031 0.489*** −0.066

Weather condition
Adverse −0.292* −0.292* −0.292* −0.292*

Surface condition
Wet −0.307** −0.307** −0.307** −0.307**

Lighting condition
Dark – lit 0.023* 0.023* 0.023* 0.023*
Dark – not Lit 0.144*** 0.144*** 0.144*** 0.144***

Accident type
Fixed-object† 0.499*** 0.241*** 0.535*** 0.962***
Overturn/rollover† 0.553*** 0.245*** −0.002 −0.052

Contributing factor
Reckless 0.313** 0.313** 0.313** 0.313**
Speeding† 0.144 0.204*** 0.516*** 0.712***

Roadway characteristic
Curve† −0.035 0.099* 0.410*** 0.453***
Cut point 1.655*** 0.128* −3.345*** −4.594***

Number of observations 6545
Wald χ

2 (35) 556.38
Log likelihood at constant −8226.70
Log likelihood at convergence −7937.57
AIC 15,953.13
BIC 16,217.81

***Statistically significant at α = 0.01.
**Statistically significant at α = 0.05.
*Statistically significant at α = 0.10.
†Explanatory variable violating parallel line assumption.
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words, younger riders showed a higher probability of having no injuries and a lower prob-

ability of fatalities. Conversely, older riders showed a lower probability of no injuries and a

higher probability of fatalities. The change in the injury severity for older riders is more

pronounced compared to younger riders (from 10.9% increase in no injury to 11.8%

decrease in fatality for younger riders vs. from 35.6% decrease in no injury to 38.8%

increase in fatality for older riders). This difference can mainly be related to the physio-

logical differences between older riders and younger riders, as older riders are more vul-

nerable to severe injuries. Furthermore, older people generally show a longer response

time to events while driving, which in turn affects their critical driving behaviours (e.g.

steering and braking) (Dozza, 2013) and increases their chance of getting involved in a

more severe crash. Other similar studies by Savolainen and Mannering (2007) and

Quddus, Noland, and Chin (2002) also show the same trends.

Motorcycle rider condition, as one of the variables violating parallel line assumption, is

found to have the most pronounced effect on the injury severity outcome. Having the

Table 4. Average direct pseudo-elasticities for various severity levels.

Explanatory variable PDO C-injury B-injury A-injury Fatality

Motorcyclist characteristics
Age
Younger rider (less than 24) 10.9% 6.6% −2.8% −10.4% −11.8%
Older rider (65 and over) −35.6% −21.5% 9.2% 33.9% 38.8%

DUI driving?
Yes† −64.4% −37.2% 9.7% 79.8% 124.3%

Helmet used?
No −18.2% −11.0% 4.7% 17.4% 19.9%

Temporal variables
Season
Summer −21.1% −12.7% 5.5% 20.0% 22.9%
Winter 19.6% 11.8% −5.1% −18.6% −21.3%

Day of week
Weekend −11.2% −6.8% 2.9% 10.7% 12.2%

Crash variables
Type of setting
Rural† 22.1% −7.5% −10.8% 61.2% −6.3%

Weather condition
Adverse 25.8% 15.6% −6.7% −24.6% −28.1%

Surface condition
Wet 27.2% 16.4% −7.0% −25.9% −29.6%

Lighting condition
Dark – lit −2.0% −1.2% 0.5% 1.9% 2.2%
Dark – not lit −12.8% −7.7% 3.3% 12.2% 13.9%

Accident type
Fixed-object† −44.2% −2.1% −0.2% 29.8% 92.7%
Overturn/rollover †

−48.9% −0.2% 10.4% 1.6% −5.0%
Contributing factor
Reckless −27.7% −16.7% 7.2% 26.4% 30.2%
Speeding† −12.8% −13.4% −1.4% 36.5% 68.7%

Roadway characteristic
Curve† 3.1% −10.9% −3.7% 33.0% 43.7%

Table 5. Comparison between PO, NPO, PPO, and MNL models using AIC and BIC.

Model AIC BIC

PPO 15,953.13 16,217.81
NPO 15,984.31 16,472.94
PO 16,091.33 16,233.84
MNL 15,975.30 16,463.92
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normal condition as the base category, being under the influence of drugs and alcohol

(intoxicated driving) reduces the no injury probability by 64.4%, while increasing the

probability of fatality by 124.3%. A recent study by Liu, Liang, Rau, Hsu, and Hsieh

(2015) indicates that intoxicated motorcycle riders present various characteristics and

body injury patterns compared to sober drivers. Operator condition (i.e. being under

the influence) has previously been found to be a major contributing factor to other

crash types as well (Pour-Rouholamin, Zhou, Zhang, & Turochy, 2016).

The next variable under motorcyclist characteristics is whether the rider wears a helmet.

The specific result and obtained average direct pseudo-elasticities demonstrate that not

wearing a helmet significantly affects the injury severity outcome, resulting in an 18.2%

decrease in no injury and a 19.9% increase in the fatality probability. Abbas, Hefny,

and Abu-Zidan (2012) disclosed that on a global scale helmet non-usage percentage is

the most significant factor affecting motorcyclists’ fatality rate. Furthermore, analyses

(Rice et al., 2016) have shown that motorcycle helmet usage is associated with a consider-

able decrease in the risk of head injury and fatal injury, and with a moderately decreasing

risk of neck injury. However, the effect of not wearing a helmet on the probability of severe

injuries in the studied dataset is not as strong as would be expected. It is also believed that

the type of helmet used can significantly affect the type and severity of the injury (Brewer

et al., 2013; Erhardt, Rice, Troszak, & Zhu, 2016).

4.3. Temporal variables

Time of the year, indicated by season, is found to be significantly associated with injury

severity. Crashes during the summer are more likely to be fatality (22.9%), while

crashes occurring in winter are less likely to be fatality (21.3%). A possible explanation

for this finding would be the motorcycle traffic volume variations, peaking during the

summer months when the weather allows for riding. Given this, adverse weather con-

ditions are shown to have fewer fatalities and severe crashes compared to clear weather

(Eisenberg & Warner, 2005). Generally, drivers adopt various kinds of risk-compensating

behaviours, including speed reduction during adverse weather conditions, which sub-

sequently reduces the severity of crashes (Kilpeläinen & Summala, 2007). Gill and Gold-

acre (2009) also indicated that hospital admissions for motorcyclists in August are 33%

above the annual average and in January 43% below the annual average.

Regarding the day of the week, motorcycle crashes that happened during the weekend

are found to have a higher probability of fatality (12.2%) to riders. Blackman and Haworth

(2013) and Zambon and Hasselberg (2006) also found a similar trend. An interesting

finding by Peek-Asa, McArthur, and Kraus (1999) shows that weekend motorcycle

riders are more likely to wear non-standard helmets compared to weekday riders.

Given the significance of helmet use in this study, this finding may further corroborate

the role of helmet use in severe injuries.

4.4. Crash variables

The type of setting, urban vs. rural, is found to be significantly associated with injury sever-

ity and one of the factors that violates the parallel line assumption. The calculated elasti-

cities indicate that crashes that happen in rural areas compared to urban areas show
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various behaviours. Specifically, crashes in rural areas show an increase in no injury

(22.1%), an increase in incapacitating injury (61.2) and a decrease in fatality (6.3%).

However, rural areas have traditionally seen more fatal crashes than urban areas. Specifi-

cally related to this paper, single-vehicle crashes in rural areas are known for their higher

likelihood of fatality compared to crashes in urban areas (Adinegoro, Haworth, &

Debnath, 2015). It should be noted that emergency medical services are more accessible

and faster in urban areas, which may reduce the severity of crash-related injuries

(Pour-Rouholamin & Zhou, 2016a).

Adverse weather conditions and wet surfaces were both found to decrease the sever-

ity of injuries sustained by motorcycle riders. More specifically, adverse weather con-

ditions are associated with a 28.1% reduction in the likelihood of fatalities and a

25.8% increase in the likelihood of no injuries. For wet surface conditions, these

numbers change to 29.6% and 27.2%. These findings are reasonable, as during

adverse weather conditions, when sufficient sight distance is not provided or on wet

surfaces, road users tend to show more risk-compensating behaviours, pay more atten-

tion to their surroundings, including roadway and other vehicles, maintain longer head-

ways, and drive at lower speeds (Shaheed & Gkritza, 2014). Haque et al. (2012) also

demonstrated that riding on wet pavement often results in less severe injuries. Further-

more, it is possible that fewer casual riders (e.g. riders more willing to ride with little or

no protective equipment, less training, and/or less experience) would expose themselves

to such adverse conditions. This may suggest that the population of riders that crash in

these conditions are not the same ones that are crashing during dry conditions in some

cases. Given that North Carolina is ranked ninth in the United States regarding average

total yearly precipitation, this finding is considerable, requiring more attention to the

issue.

Riding during the night in darkness, whether any kind of lighting is provided or not,

also significantly affects the severity of motorcycle rider crashes. It should be noted that

darkness, when there is no lighting provided, increases the severity of injuries (13.9%

increase in probability of fatality). Several factors might explain this finding. For instance,

Bella, Calvi, and D’Amico (2014) have found the dominance of sleepiness, glare, dark

adaption, reduced visibility of roadways, signs and markings, and a higher proportion

of drunk drivers as contributing factors to more severe injuries at night. To delineate

between lit and unlit roadways, Zhang, Yau, Zhang, and Li (2016) also disclosed that

driving at night without lighting is more likely to cause fatigue-related crashes, with fol-

lowing severe injury outcomes.

The estimation results presented in Table 3 identified a significant relationship between

the type of accident and crash injury outcome. Violating the parallel line assumption, a

collision with a fixed object is found to considerably increase the probability of severe inju-

ries. This parameter is the second strongest parameter, increasing the probability of fatal-

ities by 92.7%. It is believed that the injury outcome for motorcycle riders hitting roadside

objects (e.g. utility poles, curbs) tends to be more severe. Overturn/rollover is also another

confounding factor that violates the parallel line assumption. The specific findings of this

study indicate a 48.9% reduction in the probability of no injuries, a 5.0% decrease in the

probability of fatalities, and a 10.4% increase in the probability of non-incapacitating (B-)

injuries. Daniello and Gabler (2011) calculated the fatality risk of colliding with a fixed

object to be 15 times greater than the fatality risk of an overturn collision.
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Reckless riding refers to the deliberate violation of safe riding practices (Taubman-Ben-

Ari, Mikulincer, & Gillath, 2004), such as following too close, disregarding traffic control

devices, failure to yield the right-of-way, or multiple lane changing. Reckless riding is

associated with more severe injuries and potentially increases the probability of fatality

by 30.2%. Speeding is another parameter violating the parallel line assumption and neces-

sitating the development of a PPO model. Given this, speeding shows a non-linear change

in the severity outcome of injuries, so that it increases the likelihood of fatalities by 68.7%

and decreases the likelihood of no injuries by 12.8%. The relationship between speeding

and injury severity can be explained as higher speeds leading to a higher probability of

overturn/rollover and higher impact speeds with fixed objects, increasing the likelihood

of more severe injuries.

Roadway curvature was the last significant parameter violating the parallel line assump-

tion. Having the straight highways as the reference category, motorcycle crashes that

happen at curves are more likely to produce fatalities (43.7%) and less likely to result in

no injuries (3.1%). To better understand the effect of curvature, Schneider et al. (2010)

explored the effect of horizontal curvature on single-vehicle motorcycle crashes on rural

two-lane highways. Their analysis revealed a significant increase in the frequency of

motorcycle crashes, given that the rider negotiates a short radius and insufficient length

of the curve. The higher the frequency of the crashes, the higher the risk of injuries to vul-

nerable motorcycle riders. Roadway curvatures are known for reducing available sight dis-

tance and decreasing vehicle-controlling capabilities and subsequently increasing the

probability of crashes and fatalities.

4.5. Comparison to other studies

Table 6 compares our findings with those of previous studies focusing on single- and

multi-vehicle motorcycle crashes. This comparison highlights the similarities and differ-

ences between our study and others with respect to significant confounding factors,

showing one of the unique aspects of this study. When looking at this table, a few

points are worth mentioning. For example, all the reviewed studies explored that

factors such as older riders, driving under the influence (DUI) riding, not wearing

helmets, crashes during weekends, darkness, crashes with fixed objects, reckless riding,

and speeding were associated with higher injury severities. In contrast, factors such as

crashes during winter, adverse weather condition, wet surface, and dark lighting con-

ditions decrease the severity of crashes. Additionally, crashes in rural areas and crashes

occurred along the curves showed fluctuating effects of injury severity, supporting the

results of previous studies to some extent. Conflicting findings were obtained for the

effects of motorcyclists’ age and season on injury severities. More specifically, whereas

our study findings indicate that the younger riders (less than 24) were associated with

lower crash severities, Pai and Saleh (2007) demonstrated that the crash injury severities

increase among younger riders. Moreover, unlike our study, Shaheed, Gkritza, Zhang, and

Hans (2013) explored that the summer resulted in crashes with lesser injury outcomes.

While the underlying cause of these inconsistent results cannot be described with any

reasonable certainty, the possible reasons to obtain such results include using different

crash severity levels (for instance, Shaheed et al. (2013) combined A-injury and fatality

which potentially affects the magnitude and direction of the results), various geography
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Table 6. Comparison of the results with other studies.

Explanatory
variable

Our
study

Related study

Single-vehicle motorcycle crash Multi-vehicle motorcycle crash

Lin, Chang,
Huang,

Hwang, and
Pai (2003)

Savolainen
and

Mannering
(2007)

Schneider and
Savolainen
(2011)

Shaheed
and Gkritza
(2014)

Shaheed
et al.
(2013)

Chung,
Song and
Yoon
(2014)

Rifaat, Tay
and de
Barros
(2012)

de
Lapparent
(2006)

Pai and
Saleh
(2007)

Quddus
et al.
(2002 )

Chang
et al.
(2016)

Cunto and
Ferreira
(2016)

Motorcyclist characteristics
Age

Younger
rider (less
than 24)

↓
a

–
c

– – – – – – – ↑ – – –

Older
rider (65 and
over)

↑
b

– ↑ ↑ – – – – ↑ ↑ – ↑ –

DUI driving?
Yes ↑ – ↑ ↑ ↑ – ↑ ↑ – – – – –

Helmet used?
No ↑ – ↑ ↑ ↑ ↑ – – – – – ↑ ↑

Temporal variables
Season
Summer ↑ – – – – ↓ – – – – – – –

Winter ↓ – – – – – ↓ – ↓ – – –

Day of week
Weekend ↑ – – – – – – – – – – – ↑

Crash variables
Type of setting
Rural ↑↓ ↑ – – ↑ – – – – – – – –

Weather condition
Adverse ↓ – – – – – – – – ↓ – – –

Surface condition
Wet ↓ – ↓ – ↓ – – – – – – – –

Lighting condition
Dark – lit ↓ ↓ ↓ – – ↓ ↓ ↓ ↓ ↓ – ↓ –

Dark –
not lit

↑ ↑ ↑ ↓ – ↑ ↑ ↑ ↑ ↑ – ↑ ↑

Accident type

(Continued )
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Table 6. Continued.

Explanatory
variable

Our
study

Related study

Single-vehicle motorcycle crash Multi-vehicle motorcycle crash

Lin, Chang,
Huang,

Hwang, and
Pai (2003)

Savolainen
and

Mannering
(2007)

Schneider and
Savolainen
(2011)

Shaheed
and Gkritza
(2014)

Shaheed
et al.
(2013)

Chung,
Song and
Yoon
(2014)

Rifaat, Tay
and de
Barros
(2012)

de
Lapparent
(2006)

Pai and
Saleh
(2007)

Quddus
et al.
(2002 )

Chang
et al.
(2016)

Cunto and
Ferreira
(2016)

Fixed-
object

↑ ↑ ↑ ↑ ↑ – – – – ↑ – –

Overturn/
rollover

↑↓ – – – ↑ – – ↑ – – – – –

Contributing factor
Reckless ↑ – ↑ – – – – ↑ – – ↑ – –

Speeding ↑ ↑ ↑ ↑ ↑ – ↑ ↑ – ↑ – – ↑

Roadway characteristics
Curve ↑↓ – ↑ – – – – ↑ – – – ↑ –

↓
a Increasing effect on injury severity.

↑
b Decreasing effect on injury severity.

–
c Not studied/non-significant.

1
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of study locations (the United States, Canada, Taiwan, and the United Kingdom) repre-

senting various riding behaviours and highway design standards, different types of the

helmet in the market, and various state and community motorcycle safety programmes.

To be specific, North Carolina Motorcycle Safety Education Programme offers several

basic courses for motorcycle riders with a minimum of 6 months riding experiences,

resulting in a possible decrease in the injury severity of crashes. It is worth mentioning

that in most reviewed studies, the effects of contributing factors on injury serveries of

single- and multiple-vehicle motorcycle crashes show the same trends. Crashes in rural

areas, overturn/rollover crashes, and crashes while negotiating a curve showed fluctuating

effects on injury severity based on our study while these factors have all showed an

increase in the probability of higher injury severities in other studies, whether single-

vehicle or multi-vehicle.

5. Conclusions and recommendations

This paper investigated risk factors that affect the injury severity of the riders in single-

vehicle, single-rider motorcycle crashes in North Carolina. Several reasons led the researcher

to put their emphasis on this group of riders, mainly to make a homogenous crash dataset to

the extent possible that offsets the effect of other possible factors and control the results for

actual confounding variables. Given the ordered nature of crash severity, ranging from no

injury to fatality, and as discussed in the model comparison section, ordered-response

models were found to be more appropriate (Pour-Rouholamin & Zhou, 2016b). Three

ordered-response models, PPO, NPO, and PO, as well as one unordered model, MNL,

were nominated for modelling purposes. Several factors at the motorcycle rider, temporal,

and crash level were found to significantly affect the injury outcome of the riders, among

which the variables of DUI riding, rural setting, hitting a fixed object, overturn/rollover,

speeding, and driving on a curved roadway were found to violate the parallel line assump-

tion, requiring the development of a PPO model. A comparison between all these modelling

techniques using AIC and BIC showed that the PPO model outperforms the other three

models and produces better results. Furthermore, a comparison between the results of

our study and those of others (single-vehicle and multi-vehicle motorcycle crashes) has

been made that highlights the differences and stresses the novelty of findings.

The analysis of the data identified various issues that can be addressed to reduce the

injury severity of single-vehicle, single-rider motorcycle crashes. These could potentially

include safety awareness campaigns, educational efforts, and law enforcement. Based on

the obtained average direct pseudo-elasticities, it is suggested that if financial constraints

exist, priority should be given to the parameters with higher elasticities, as addressing these

issues could potentially result in more effectively alleviating the severity of injuries. The

findings require an evidence-based injury prevention initiative that targets older motor-

cycle riders, DUI riders, speeders, reckless riders, and non-helmet riders, given that

these groups are found to have increased injury severity. North Carolina currently has

several educational programmes to promote safety among motorcycle riders; however,

these efforts should focus more on the factors above.

With an increase of 27.35% in the population of persons 65 years and over in North

Carolina in the 2000s, addressing older riders is necessary through strategies like counsel-

ling by healthcare providers or self-assessment tools that can help older riders recognize if
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they can ride on their own. The DUI condition has the strongest effect on the probability

of motorcycle rider injury severity. It should be noted that the role of alcohol is more

noticeable in motorcycle-related crashes than in car crashes. The reason is that riding a

motorcycle needs balance, operating two brakes, steering, and shifting while navigating

through potential hazards such as rough pavement. These actions are considerably

affected by the rider’s condition, resulting in incidents and possible severe outcomes.

DUI driving prevention campaigns for motorcycle riders, tied with stricter enforcement

rules, are recommended for North Carolina. Currently, North Carolina has set the

threshold of 0.08 BAC for non-commercial vehicle operators to be illegally impaired.

However, if you have previously been convicted of DUI driving, this threshold drops to

0.04, representing a stricter rule.

Not wearing a helmet is found to increase the probability of severe injuries; however,

the effect is not as strong as would be expected in terms of magnitude. Interestingly, a

study by Barrette, Kirsch, Savolainen, Russo, and Gates (2014) revealed that after repealing

a universal helmet law in lieu of the partial helmet law in Michigan, less severe injuries

were observed at intersections, at low speeds, and in inclement weather conditions.

However, the injuries were found to get more severe when speeding is involved, or

when the rider was under the influence of alcohol and/or drugs. In other words, speeding

and DUI driving can offset the benefit of wearing a helmet. This can justify the stronger

effect of DUI motorcycle riding and speeding on the injury severity of riders, compared to

not wearing a helmet.

Lighting condition has also been found as one of the significant factors. HSIS data

provide crash locations based on the mileposts on the majority of roadways. Using this,

hotspot locations with respect to frequency and severity of motorcycle crashes can be

investigated on their lighting conditions. The findings of this study suggest that providing

lighting at such locations can significantly decrease the probability of severe injuries.

Crashes during the weekend and hitting a fixed object were among significant variables

increasing injury severity. A possible explanation for the appearance of the weekend

and fixed-object crashes in the final model with the same direction of effect on injury

severity would be that motorcycle riding during weekends is generally more for rec-

reational purposes than for commuting, which is associated with a greater likelihood of

having severe single-vehicle, fixed-object crashes.

Regarding the considerable effect of roadway curvature on the probability of severe

injuries, the use of advanced curvature warning signs as well as chevrons through the hori-

zontal curves is suggested. A field observation of the hotspot locations might be necessary,

as some of these locations may already have the appropriate signs but lack adequate visi-

bility. In addition to their visibility and legibility (Balali & Golparvar-Fard, 2016), signs are

only effective when they clearly convey the intended message in both day and night-time

conditions (Khalilikhah & Heaslip, 2016; Khalilikhah, Heaslip, & Song, 2015). High-fric-

tion surface treatment at problematic locations is another possible countermeasure for a

state with such a high precipitation level.

Similar to most studies, this study also has some limitations. The most important limit-

ation of this study comes from the inevitable role of human error in the data collection

process by police officers that affects the level of detail and accuracy for the obtained sig-

nificant variables. An appropriate measure of exposure to crash is also missing in the data-

base. Currently, age is considered as a measure of exposure; however, using other measures
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such as the age of licensure or driving experience, if available, might potentially replace age

and provide more reliable results.
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