

www.roadsafety.unc.edu

Collaboration: University of Tennessee, Knoxville; University of North Carolina, Chapel Hill

R20 Project Team

• UT Knoxville

- Prof. Asad J. Khattak
 - Behram Wali
 - Numan Ahmad

- UNC Chapel Hill
 - Arthur Goodwin

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overview

Research Objectives:

The project addresses four critical safety issues related to motorcyclists:

- 1. Motorcycle crash risk factors, especially how visual conspicuity (bright-colored or reflective clothing) influences their likelihood of being involved in a crash?
- 2. How the frequency and causes of crashes among young and inexperienced riders differ from those of older, experienced riders?
- 3. How training & education programs relate to crash outcomes?
- 4. New automation technologies that can reduce identified risks in motorcycle crashes based on analysis of motorcycle crash risk factors.

Overview

Research Questions:

- 1. While controlling for rider-specific, psycho-physiological, and other observed/unobserved factors, how are different risk factors associated with motorcycle crash occurrence and injury severity?
- 2. How does motorcyclist conspicuity relate to crash risk?
- 3. How can ignoring important methodological issues such as omitted variable biases and unobserved heterogeneity influence the magnitude of relative risks (or odds ratios) and final inferences?
- 4. How does age and inexperience contribute to motorcycle crash outcomes and occurrences?
- 5. How do training & education programs impact crash outcomes?
- 6. How can automation eliminate errors associated with motorcycle crashes?
- 7. While using a different scoring system to measure injury severity and controlling for rider and crash specific factors as well as other observed/unobserved factors, how do different "policy-sensitive" factors correlate with injury severity?

R20 Project: Studies Conducted

Study I:

A Heterogeneity-Based Case-Control Analysis of Motorcyclist's Injury Crashes: Evidence from Motorcycle Crash Causation Study

Study II:

Modeling Injury Severity Score as a More Precise Measure of Motorcyclist Injuries: A Correlated Random Parameter Corner Solution Framework

Study I (Project R20)

A Heterogeneity-Based Case-Control Analysis of Motorcyclist's Injury Crashes: Evidence from Motorcycle Crash Causation Study

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Introduction

- Anatomy of motorcycle crash >> Motorcycle crash is a violent event
- Vehicle Differences: Motorcycle lacks the crashworthiness & occupant protection features of an automobile

Key Question

 How behavioral, psycho-physiological, & exposure related factors relate to injury crash likelihood?

- Helmet coverage & fit
- Conspicuity & apparel type
- Rider training
- Fatigue

Conceptual Framework

- 351 cases (riders involved in injury crashes)
- Similarly-at-risk 702 matched controls (riders not involved in injury crashes)
- 33% are injury crashes and the rest baseline (no-crash) by design.

Methodological Framework

- Dependent Variable Injury Crash Propensity (0/1)
- Hierarchical grouped random parameter logit model

with heterogeneous means

Random Heterogeneity

Heterogeneity due to unobserved factors (unobserved heterogeneity)

Systematic component
ofRemaining component
of randomrandom heterogeneity -
observed heterogeneityheterogeneity -
unobserved heterogeneity

Between observation/ between-triplet heterogeneity

Selected Descriptive Statistics (See paper for details)

Variables	Crash G 3	roup (N = 51)	Non-Cr	rash Group (N = 702)	Mean Comparison Test Ho: μ2 - μ1
	μ1	Min/Max	μ2	Min /Max	= 0
Type of helmet coverage					
Helmet coverage type 1 (Partial coverage)	0.12	0/1	0.32	0/1	Fail
Helmet fit (1 if acceptable fit, 0 otherwise)	0.50	0/1	0.94	0/1	Fail
Physical/psychological factors					
No psychological impairment	0.44	0/1	0.81	0/1	Fail
Hours of sleep prior to event	7.67	2/12	8.12	1/16	Fail
Exposure-related factors					
Motorcycle riding experience in years	11.52	0/46	20.48	0/69	Fail
Total miles driven prior to event	10.35	1/96	19.05	1/600	Fail
Number of traffic convictions in last 5 years					
One traffic conviction	0.16	0/1	0.23	0/1	Fail
Driver's apparel					
Retroreflective upper body clothing	0.13	0/1	0.20	0/1	Fail
Lower clothing motorcycle oriented	0.05	0/1	0.25	0/1	Fail
Actual speed before event	32.84	0/90	46.35	0/85	Fail

Almost everyone was using helmet...

Model Selection

Goodness of Fit	Mode (igno	els for individ ring matched	dual obser l-triplet st	vations ructure)	Models (accountin	for matche ng for mate structure)	ed-triplets ched-triplet)
Measures	Model 1*	Model 2**	Model 3***	Model 4****	Model 5**	Model 6***	Model 7****
N (obs.)	1053	1053	1053	1053	1053	1053	1053
# of triplets					351	351	351
Degrees of							
Freedom	24	31	32	39	31	32	40
AIC	659.4	639.2	641.5	633.2	649.4	652.2	662.8

After accounting for systematic & random heterogeneity, **no** significant "within" triplet dependence and variation is observed.

Notes:

* Fixed parameter model

** Random parameters model

*** Random intercept and random parameters model

**** Random parameters/random intercepts with heterogeneity-in-means

Selected Results (Relative Risk Estimates)

Variables	Model 1 Fixed Parameter Logit		Mo Random Par	del 2 rameter Logit	Model 4 Random Parameter Logit - Heterogeneity in Means	
	Direction of effect	% change in crash risk	Direction of effect	% change in crash risk	Direction of effect	% change in crash risk
Number of traffic convictions in last 5 years						
Three traffic convictions	↑	62.26	[↓]	-98.93	[↓] ^a	-101.00
Clothing color						
Lower clothing motorcycle oriented	\downarrow	-77.62	[↓]	-98.91	[↓]	-99.85
Dark Upper body clothing color	↑	209.88	1	254.31	↑	297.49
Driver-related factors						
5 hours or less sleep	↑	150.93	1	191.54	↑	197.43
Female driver	↑	50.68	[1]	-6.39	[↑] ^a	47.70
Type of helmet coverage						
Partial coverage – USDOT compliant least intrusive helmet	Ļ	-53.23	↓	-51.81	↓	-49.34
Year of training						
Training between 2001-2010	\downarrow	-65.01	\downarrow	-70.09	\downarrow	-68.34
Training between 2011- 2015	\downarrow	-73.55	\downarrow	-77.26	↓	-76.07

Notes: (*) Brackets indicate mixed effects for the random-held parameters; (a) indicates random parameters with heterogeneity-in-means.

Illustration: Observed & Unobserved Heterogeneity Effects

"Unobserved Heterogeneity"

Effects of speed on crash propensity (probability density)

Illustration: Observed & Unobserved Heterogeneity Effects

Effects of speed on crash propensity (probability density)

Conclusions

- Compared to traditional conditional estimation of relative risks, heterogeneity based case-control analysis provides deeper insights.
- Reductions in motorcycle injury crashes are possible by:

Encouraging "proper" helmet use

Increasing rider conspicuity

Using motorcycle-oriented clothing

Conclusions

- Further reductions in injury crashes can be achieved by:
 - On-going participation in training programs (especially refresher courses for experienced riders)
 - Preventing sleep-deprived/fatigued riding
 - Reducing riding under the influence of alcohol (especially at high speeds)

Future Work/Work In Progress

 Need to quantify # of lives that can be saved or injuries prevented with "high-priority" interventions

			Fatalities	Lives	Potential	
Motorcyclists	Effectiveness	Total	Helmeted	Unhelmeted	Saved	Lives
		Total	Heimeted	Onnenneted	Saved	Saved
Operators	0.37	3,382	1,805	1,577	1,060	1,644
Passengers	0.41	279	141	138	98	154
Total	0.37	3,661	1,946	1,715	1,158	1,798

Table 1 - Lives Saved by Motorcycle Helmets In 2003

- Estimate the population that will benefit from these interventions
- Microscopic injury analysis >> Chronic disease & public health perspective

Study II (Project R20)

Modeling Injury Severity Score as a More Precise Measure of Motorcyclist Injuries: A Correlated Random Parameter Corner Solution Framework

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Introduction - Notice Anything?

Motorcyclist deaths occurred 28 times more frequently than fatalities in other

vehicles (NHTSA, 2016)

Key Objectives

Colloborative Sciences Center for ROAD SAFETY February 4, 2021

Data Linkage

Measuring Injury Severity – A Case for Better Measures

Perspectives on Injury Severity

Majority of the safety literature is based on police-reported KABCO scale.

Present Study: Anatomical Injury Severity Measures

AIS

1 MINOR

- 2 MODERATE
- **3 SERIOUS**
- **4 SEVERE**
- **5 CRITICAL**
- 6 MAXIMUM INJURY,

VIRTUALLY UNSURVIVABLE Addressing Multiple Injuries for Predicting survival **Injury Severity Score**

$$ISS = A^{2+}B^{2+}C^2$$

Six ISS Body Regions:

- Head or neck Face
- Abdominal Chest
- Extremities
- External

Distributions of ISS & AIS

Results: AIS Vs. ISS

ISS Categories	ISS (1-3):	ISS (4-8):	ISS (9-15):	ISS (16-24):	ISS (25-35):	ISS (36-75): Maximum	
AIS Categories	Minor	Moderate	Serious	Severe	Critical	(Untreatable)	Total
	121	1	0	0	0	0	122
Minor Injury	99.18	0.82	0	0	0	0	100
	94.53	1.12	0	0	0	0	38.01
	4	85	14	0	0	0	103
Moderate Injury	3.88	82.52	13.59	0	0	0	100
	3.13	95.51	26.42	0	0	0	32.09
	1	2	39	12	1	0	55
Serious Injury	1.82	3.64	70.91	21.82	1.82	0	100
	0.78	2.25	73.58	70.59	10	0	17.13
	2	0	0	5	6	2	15
Severe Injury	13.33	0	0	33.33	40	13.33	100
	1.56	0	0	29.41	60	8.33	4.67
	0	1	0	0	3	9	13
Critical	0	7.69	0	0	23.08	69.23	100
	0	1.12	0	0	30	37.5	4.05
	0	0	0	0	0	13	13
Maximum (Untreatable)	0	0	0	0	0	100	100
	0	0	0	0	0	54.17	4.05
	128	89	53	17	10	24	321
Total	39.88	27.73	16.51	5.3	3.12	7.48	100
	100	100	100	100	100	100	100
			Pearson χ^2 (2	5) = 855.1792; p	-value = 0.000		
Measures of Association		Kendall's τ	b rank coefficient	= 0.9111; Asym	ptotic Standard	Error = 0.019	

Results: AIS Vs. ISS

"100 percent of injuries classified as maximum (untreatable) injuries By AIS are classified likewise by ISS"

ISS Categories AIS Categories	ISS (1-3): Minor	ISS (4-8): Moderate	ISS (9-15): Serious	ISS (16-24): Severe	ISS (25-35): Critical	ISS (36-75): Maximum (Untreatable)	Total
	121	1	0	0	0	0	122
Minor Injury	99.18	0.82	0	0	0	0	100
	94.53	1.12	0	0	0	0	38.01
	4	85	14	0	0	0	103
Moderate Injury	3.88	82.52	13.59	0	0	0	100
	3.13	95.51	26.42	0	0	0	32.09
	1	2	39	12	1	0	55
Serious Injury	1.82	3.64	70.91	21.82	1.82	0	100
	0.78	2.25	73.58	70.59	10	0	17.13
	2	0	0	5	6	2	15
Severe Injury	13.33	0	0	33.33	40	13.33	100
	1.56	0	0	29.41	60	8.33	4.67
	0	1	0	0	3	9	13
Critical	0	7.69	0	0	23.08	69.23	100
	0	1.12	0	0	30	37.5	4.05
	0	0	0	0	0	13	13
Maximum (Untreatable)	0	0	0	0	0	100	100
(Untreatable)	0	0	0	0	0	54.17	4.05
	128	89	53	17	10	24	321
Total	39.88	27.73	16.51	5.3	3.12	7.48	100
	100	100	100	100	100	100	100
			Pearson χ^2 (2	5) = 855.1792; p	-value = 0.000		
Measures of Association		Kendall's τ_b	rank coefficie	nt = 0.9111; As	symptotic Stand	lard Error = 0.019	

Results: AIS Vs. ISS

ISS Categories ISS (36-75): Maximum ISS (25-35): ISS (1-3): ISS (4-8): ISS (9-15): ISS (16-24): (Untreatable) **AIS Categories** Minor Moderate Serious Severe Critical Total 121 1 0 0 0 0 122 Minor Injury 0.82 0 0 0 0 99.18 100 0 0 0 0 94.53 1.12 38.01 85 14 0 0 4 0 103 **Moderate Injury** 3.88 82.52 13.59 0 0 0 100 3.13 95.51 26.42 0 0 0 32.09 1 2 39 12 1 0 55 Serious Injury 1.82 70.91 3.64 21.82 1.82 0 100 0.78 2.25 73.58 70.59 10 0 17.13 2 2 0 0 5 6 15 Severe Injury 13.33 0 0 33.33 40 13.33 100 1.56 0 0 29.41 60 8.33 4.67 0 3 9 0 1 0 13 Critical 0 0 7.69 0 23.08 69.23 100 0 1.12 0 0 30 37.5 4.05 0 0 0 0 0 13 13 Maximum 0 0 0 0 0 100 100 (Untreatable) 54.17 0 0 0 0 0 4.05 24 128 89 53 17 10 321 Total 39.88 27.73 16.51 5.3 3.12 7.48 100100 100 100 100 100 100 100 Pearson χ^2 (25) = 855.1792; p-value = 0.000 Kendall's τ_b rank coefficient = 0.9111; Asymptotic Standard Error = 0.019 Measures of Association

AIS can underestimate the 'true' injury severity sustained by a rider.

Empirical Analysis – Injury Severity Score

- Corner-solution Vs. censoring (Left-spike at ISS = 1)
- Application of Tobit model in a 'corner-solution' setup
- Methodological Issues: Correlated & uncorrelated unobserved heterogeneity
- AIS was compared with ISS and ISS was found to be better based on theory

and empirical evidence (goodness-of-fit) (Results not shown)

Empirical Analysis – Uncorrelated Random Parameters

Empirical Analysis – Correlated Random Parameters

Selected Descriptive Statistics (See paper for details)

Variables (N = 321) Mean SD Min Max							
	10.320	15.976	1	75			
Dependent Variable: Rider Injury Severity Score	1st Qua Quartile =						
Rider Experience Related Factors		•					
Gap exists between riding (1/0)	0.20	0.40	0	1	1.45		
Experienced rider course (1/0)	0.05	0.21	0	1	1.14		
Rider Apparel & Conspicuity Related Factors							
Upper body clothing retroreflective $(1/0)$	0.14	0.35	0	1	1.57		
Upper clothing MC oriented (1/0)	0.34	0.47	0	1	1.81		
Shoes MC oriented (1/0)	0.17	0.37	0	1	1.35		
Dark blue color waist down clothing $(1/0)$	0.37	0.48	0	1	1.43		
Helmet color (multicolor)	0.07	0.26	0	1	1.47		
Helmet color (White)	0.06	0.24	0	1	1.33		
Helmet color (silver, grey)	0.06	0.23	0	1	1.25		
Helmet color (Black)	0.43	0.50	0	1	2.01		
Helmet Related Factors							
Half face motor vehicle, motorcycle helmet (1/0)	0.11	0.31	0	1	1.25		
Acceptable helmet fit (1/0)	0.55	0.50	0	1	2.92		

Selected Estimation Results (Marginal Effects)

	Fixed Pa To	irameter bit
Variables	ME-1	ME-2
Rider Apparel & Conspicuity Related Factors		
Upper body clothing retroreflective (1/0)	-2.58	-1.81
Shoes MC oriented (1/0)	-3.42	-2.40
Upper clothing MC oriented (1/0)	4.03	2.83
Blue color waist down clothing $(1/0)$	1.33	0.93
Helmet color (silver, grey)	-3.74	-2.62
Helmet color (Black)	4.87	3.42
Rider Experience Related Factors		
Gap exists between riding (1/0)	1.52	1.07
Experienced rider course (1/0)	-7.00	-4.92
Helmet Related Factors		
Half face motor vehicle, motorcycle helmet (1/0)	4.10	2.88
Acceptable helmet fit (1/0)	-5.93	-4.17

ME-1: Effect of a unit change in explanatory factor on the expected value of censored and uncensored ISS ME-2 show the effect of a unit change in explanatory factor on the expected value of uncensored ISS outcomes

Selected Estimation Results (Marginal Effects)

		Fixed Pa To	arameter bit	Uncor Ran Paramet	related dom ter Tobit	Corro Ran Paramet	elated dom ter Tobit
	Variables	ME-1	ME-2	ME-1	ME-2	ME-1	ME-2
	Rider Apparel & Conspicuity Related						
Different types of marginal	Factors						
offacts as are relevant in	Upper body clothing retroreflective $(1/0)$	-2.58	-1.81	-2.04	-1.98	-1.89	-1.89
	Shoes MC oriented (1/0)	-3.42	-2.40	-5.58	-5.42	-5.95	-5.94
censored-regression	Upper clothing MC oriented (1/0)	4.03	2.83	4.40	4.27	3.21	3.21
framework may not be that	Blue color waist down clothing $(1/0)$	1.33	0.93	5.30	5.14	5.45	5.44
relevant in heterogeneity-	Helmet color (silver, grey)	-3.74	-2.62	-7.74	-7.51	-7.56	-7.55
hased Tahit modeling	Helmet color (Black)	4.87	3.42	5.44	5.28	4.25	4.25
bused 10011 modeling	Rider Experience Related Factors						
	Gap exists between riding $(1/0)$	1.52	1.07	4.12	4.00	3.39	3.39
	Experienced rider course (1/0)	-7.00	-4.92	-7.69	-7.46	-8.21	-8.20
	Helmet Related Factors						
	Half face motor vehicle, motorcycle						
	helmet (1/0)	4.10	2.88	4.87	4.72	5.31	5.31
	Acceptable helmet fit (1/0)	-5.93	-4.17	-9.56	-9.27	-8.82	-8.81

ME-1: Effect of a unit change in explanatory factor on the expected value of censored and uncensored ISS ME-2 show the effect of a unit change in explanatory factor on the expected value of uncensored ISS outcomes

Selected Estimation Results (Marginal Effects)

		Fixed Pa To	rameter bit	Uncori Ran Paramet	related dom er Tobit	Corre Ran Paramet	elated dom ter Tobit
	Variables	ME-1	ME-2	ME-1	ME-2	ME-1	ME-2
	Rider Apparel & Conspicuity Related						
Different types of marginal	Factors						
effects as are relevant in	Upper body clothing retroreflective $(1/0)$	-2.58	-1.81	-2.04	-1.98	-1.89	-1.89
	Shoes MC oriented (1/0)	-3.42	-2.40	-5.58	-5.42	-5.95	-5.94
censorea-regression	Upper clothing MC oriented (1/0)	4.03	2.83	4.40	4.27	3.21	3.21
framework may not be that	Blue color waist down clothing $(1/0)$	1.33	0.93	5.30	5.14	5.45	5.44
relevant in heterogeneity-	Helmet color (silver, grey)	-3.74	-2.62	-7.74	-7.51	-7.56	-7.55
hased Tohit modeling	Helmet color (Black)	4.87	3.42	5.44	5.28	4.25	4.25
bused tooli modeling	Rider Experience Related Factors						
	Gap exists between riding $(1/0)$	1.52	1.07	4.12	4.00	3.39	3.39
	Experienced rider course (1/0)	-7.00	-4.92	-7.69	-7.46	-8.21	-8.20
	Helmet Related Factors						
	Half face motor vehicle, motorcycle						
	helmet (1/0)	4.10	2.88	4.87	4.72	5.31	5.31
	Acceptable helmet fit (1/0)	-5.93	-4.17	-9.56	-9.27	-8.82	-8.81
	LL(β)	-975	.154	-935	.175	-914	.945
	AIC	200	4.3	193	6.4	192	.5.9

ME-1: Effect of a unit change in explanatory factor on the expected value of censored and uncensored ISS ME-2 show the effect of a unit change in explanatory factor on the expected value of uncensored ISS outcomes

Mechanism of Head Injuries – Helmet Use & Helmet Color

Unobserved Heterogeneity Interactions

Co	Correlated Random Parameter Tobit (URPT) Cholesky Matrix									
	Distance in feet between POI to POR (1 if > 9, 0 otherwise)	Time in seconds from precipitating event to impact (1 if $> 2.3, 0$ otherwise)	Half face motor vehicle, motorcycle helmet (1/0)	Acceptable helmet fit (1/0)	MC running off roadway, no OV involvement (1/0)	Positive BAC (1/0)				
Distance in feet between POI to POR (1 if > 9 , 0 otherwise)	15.03 [50.43] (1.00)									
Time in seconds from precipitating event to impact $(1 \text{ if } > 2.3, 0 \text{ otherwise})$	1.34 [5.13] (0.113)	11.77 [43.47] (1.00)								
Half face motor vehicle, motorcycle helmet (1/0)	0.10 [0.21] (0.014)	-7.37 [-14.28] (-0.982)	0.99 [2.06] (1.00)							
Acceptable helmet fit (1/0)	2.61 [10.45] (0.470)	-0.87 [-3.88] (-0.102)	4.82 [24.15] (0.278)	0.23 [2.10] (1.00)						
MC running off roadway, no OV involvement (1/0)	-6.35 [-10.52] (-0.226)	18.48 [27.09] (0.629)	-7.40 [-12.93] (-0.692)	-10.21 [-17.78] (-0.454)	15.63 [26.66] (1.00)					
Positive BAC (1/0)	24.12 [36.30] (0.758)	-7.41 [-12.93] (-0.145)	8.69 [14.29] (0.278)	11.33 [18.18] (0.645)	-8.60 [-13.74] (-0.678)	9.79 [17.50] (1.00)				

Conclusions

- Compared to ISS, AIS tends to underestimate the injury severity sustained by the rider
- ISS provides a more accurate approximation to mortality prediction
- Significant implications of ignoring correlated unobserved heterogeneity

Conclusions

- Motorcycle-specific shoes [ISS down by **5.94 units**]
- Retroreflective upper body clothing [ISS down by **1.88 units**]
- Riders with partial helmet coverage [ISS up by **5.31 units**]
- Riders with acceptable helmet fit [ISS down by 8.82 units]
- Helmet color matters...

Future Work/Work In Progress

- In-depth comparison of other anatomical injury severity scales
 - ISS limits consideration of multiple injuries "within" a body region.
- In-depth analysis of injuries sustained by different body parts