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Abstract: The number of motorcycle crashes in Alabama more than doubled from 1999 to 2008, while the number of fatal motorcycle

crashes tripled during the same period. Most work on motorcycle crash severity has been based on analysis of all crashes involving motor-

cycles. The majority of motorcycle crashes in Alabama are cause by the motorcyclist. An analysis of factors affecting the injury severity

outcome of motorcycle causal crashes is presented. The analysis uses a multinomial logit (MNL) regression model to examine 5 years (2006

to 2010) of crash data. The variables affecting motorcycle crashes were grouped by common characteristics into four categories: motorcyclist,

crash, environment, and roadway. Average direct pseudoelasticities were obtained to interpret the factors influencing motorcyclist-caused

crashes (MCCs) severity. With some 70% of motorcycles crashes in Alabama resulting in some type of injury, there is potential for positive

impact on safety from policies and programs that address the behavior-related crashes identified in this study. In addition to reducing behav-

iors considered as aggressive, it would appear that considerable safety benefit could be derived from efforts to alter motorcyclist behavior in

the vicinity of large vehicles, around roadway curves, and in rural areas. DOI: 10.1061/(ASCE)TE.1943-5436.0000570. © 2013 American

Society of Civil Engineers.
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Introduction

The U.S. Census Bureau reports that there were approximately

4.0 million registered motorcycles in the United States in 1999 and

7.7 million in 2008. The number of motorcycle-related fatalities

more than doubled over the same period (Fatality Analysis Report-

ing System 2011). Motorcycle crashes comprise only 1% of the total

U.S. crashes but constitute as much as 10% of total fatal crashes. As

indicated in Fig. 1, motorcycle crashes in Alabama have more than

doubled between 1999 and 2008, while fatal motorcycle crashes

have tripled (Critical Accident Reporting Environment 2013).
Analysis of 8,794 motorcycle-related crashes from 2006 to 2010

(Table 1) clearly indicates that motorcyclists are responsible for the

majority of the most severe crashes. This paper uses a straightfor-

ward multinomial logit (MNL) formulation in conjunction with

direct pseudoelasticities to identify the most prevalent factors

affecting the severity of motorcyclist-caused crashes (MCCs) in

Alabama. Specifically, an attempt is made to isolate factors affect-

ing injury severity that are attributable to motorcyclist driving

behavior and other characteristics (e.g., crash type, environment,

roadway) related to the crash. Defining crashes as being caused

by the motorcyclist is for analytical purposes only and is not

intended to imply fault or liability. For example, a single-vehicle,
run-off-road motorcycle crash would be designated as caused by
the motorcyclist even though the crash may have resulted from
evasive action to avoid an animal or other object.

The literature is replete with previous studies of motorcycle
crash severity. Most have focused on all motorcycle crash types,
including those caused by other motorists [e.g., Preusser et al.
(1995), Yuan (2000), Savolainen and Mannering (2007b),
Koustana et al. (2008), Pai (2009), Rifatt et al. (2011), Haque et al.
(2012), and Schneider et al. (2012)]. Other studies [e.g., Shankar
and Mannering (1996)] have focused more on crashes attributable
to the motorcyclist. Insight also comes from several survey-based
studies (Hurt et al. 1981; Rutter and Quine 1996; Sexton et al.
2004; Elliot et al. 2007; Savolainen and Mannering 2007a).

After a brief justification of the MNL method employed, the
data used in the study are described. The MNL model is then
estimated to examine the influence of various factors (motorcyclist,
roadway, and environmental characteristics) on motorcycle crash
severity in Alabama. The direct pseudoelasticities of key variables
are calculated and interpreted.

Methodology

There are numerous analytical methods available for analyzing the
frequency and severity of traffic crashes (O’Donnell and Connor
1996; Shankar and Mannering 1996; Al-Ghamdi 2002; Srinivasan
2002; Abdel-Aty 2003; Wang and Kockelman 2005; Savolainen
and Mannering 2007a, b; Xie et al. 2009). Crash severity is typi-
cally classified into five categories: fatal (K), severe (A), minor (B),
possible (C), and no injury (O). Because crash severity is ordinal
in nature, ordered logit or probit models can be used to model the
crash injury severities (Quddus et al. 2002). However, previous
studies have documented the limitations of using such models
(Abdel-Aty 2003; Washington et al. 2003; Savolainen and
Mannering 2007a, b). Ordered logit and ordered probit models
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are biased when outcomes are underreported, which is often the
case with lower injury severities (Hauer and Hakkert 1988), and
the assumption that crash severities are determined by a single con-
tinuous propensity measure may be incorrect (Bhat and Pulugurta
1998), preventing a variable from increasing or decreasing the
probability of low- and high-injury severities simultaneously
(Malyshkina and Mannering 2008). Multinomial models provide
consistent estimation despite underreporting of crashes, and they
can relax parameter restrictions imposed by ordered probability
models (Malyshkina and Mannering 2008; Geedipally et al. 2011).

Nested and mixed logit models were considered because they
are typically cited as useful in crash severity modeling due to
the possibility the MNL may violate the independence of irrelevant
alternatives (IIA) assumption (Savolainen et al. 2011). However,
MNL was chosen due to (1) the structure of the Alabama crash
data, (2) their relative simplicity (Greene 2007) and efficiency,
(3) the extent of their previous successful applications [e.g., Islam
and Mannering (2006), Savolainen and Mannering (2007a, b),
Malyshkina and Mannering (2008), and Geedipally et al. (2011)],
and (4) the determined of lack of IIA violation evidence for this
study. Further, many statistical packages provide an efficient and
flexible way of model development and testing for MNL models
(Kim and Boski 2001).

To formulate a MNL model, a linear function of covariates that
determine the probability of the crash severity outcome is given as
follows:

Sni ¼ xnβi þ εni; n ∈ f1; 2; : : : ;Ng; i ∈ 1; 2; : : : ; I

ð1Þ

where Sni = function determining the probability of crash severity
outcome i for accident n; xn = vector of measurable characteristics

for crash n that determine outcome i; βi = vector of estimable
coefficients for injury outcome i; and εni = error term that explains
unobserved influences on injury severity.

By assuming the error term as a generalized extreme-value
distribution, the MNL model is obtained (McFadden 1981) as

PnðiÞ ¼
expðβixnÞP
I expðβixnÞ

ð2Þ

where PnðiÞ = probability that the crash severity for accident n is i.
Relative-risk ratios (RRRs) are a common way to express how

modeled outcomes vary with the explanatory variables. A RRR
can be difficult to interpret (Greene 2007), but its interpretation
is relatively simple for binary variables. Essentially, a RRR is a
relative measure and does not inform whether the probability of
an outcome is more likely, only whether that outcome becomes
more likely compared to the baseline outcome. A RRR greater than
1 suggests the variable increases the outcome of interest, i, more
than the baseline outcome, b; a RRR of 1 suggests the variable
increases i and b equally; and a RRR less than 1 suggests the
variable increases b more than i.

Elasticities can be useful in assessing the impact of variables on
severity probabilities. However, elasticities are not applicable to
binary variables (Washington et al. 2003), so the direct pseudoe-
lasticity was calculated for each observation. Pseudoelasticity
is a measure of how the probability of an outcome varies with
an explanatory variable, but unlike RRR, pseudoelasticity does
not require direct comparison to the probability of another
outcome. The equation for direct pseudoelasticity is given in
Kim et al. (2010) as

E
Pni
xnk ¼

Pni½givenxnk ¼ 1� − Pni½givenxnk ¼ 0�

Pni½givenxnk ¼ 0�
ð3Þ

where E
Pni
xnk = direct pseudoelasticity of the kth variable for injury

severity i, crash n.
This direct pseudoelasticity value represents the percent change

in the probability of severity category i for crash n when the kth
variable is changed from 0 to 1 (Washington et al. 2003). Because
the direct pseudoelasticity is the percentage change in probability
for each observation n, an average value for all observations has
been used in this study. A pseudoelasticity of 0.5 for variable xk
in the fatal injury category means that fatalities are on average
50% more likely when xk is 1 than when it is 0, all else being equal.

Data Description

The Alabama Department of Public Safety (DPS) maintains a
comprehensive crash database and analysis system via its CARE.
CARE is a data-mining tool that interfaces with the state crash-
reporting database. CARE can retrieve data from the entire data-
base or a user-specified subset. MCC data were extracted from
CARE for the period 2006 to 2010 by filtering crashes with the
causal unit type set equal to “motorcycle.” Of the MCC identified,
some 2% were found to be attributable to defective equipment and
removed from analysis so that only crashes caused by the motor-
cyclist were considered. Single-vehicle MCCs (e.g., run-off road)
were included and treated as all other crashes with the causal unit
type designated as a motorcycle. Further exploratory data analysis
revealed an unusual pattern in motorcyclist ages. Specifically, there
were 118 crashes that listed a motorcyclist age greater than 100.
Because there is no way to verify these suspicious ages, all crashes
with a listed motorcyclist age over 100 were removed the analyses.

Fig. 1. Ten-year trend of motorcycle crashes in Alabama

Table 1. Relationship between Crashes Caused by Motorcyclists and
Other Motorcycle-Related Crashes

Severity
Number of crashes

caused by motorcyclists
Number of other
motorcycle crashes

Fatal (K) 310 112
Severe injury (A) 3,015 989
Minor injury (B) 1,042 326
Possible injury (C)
and no-injury property
damage only (O)

1,881 1,119

Total 6,248 2,546
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The data set includes 188 explanatory variables for each crash
record. Crash severity, which is the dependent variable for the
proposed model, reduced to four categories by combining the pos-
sible injury (C) and property damage only (O) categories. This is
consistent with previous research (Savolainen and Mannering
2007b) and necessary because it is often difficult to distinguish be-
tween the possible injury and property damage only categories due
to reporting variations.

Numerous variables affecting motorcycle crashes were identi-

fied in the literature (Preusser et al. 1995; Lardelli-Claret et al.

2005; Chimba et al. 2006; Savolainen and Mannering 2007b;

Eustace et al. 2011; Geedipally et al. 2011; Rifaat et al. 2011;

Shaheed and Dissanayake 2011). Descriptive statistics for the

independent variables extracted from CARE are summarized in

Table 2. Most variables exhibit a binary form [e.g., driving under

the influence (DUI) versus non-DUI, speeding versus nonspeed-

ing]. There are five age categories (<18, 18–25, 26–45, 46–65,

and over 65) in lieu of a continuous age variable because 13 crashes

reported in CARE involve motorcyclists over 79 years old. When

analyzed as a continuous variable, age was found to be a statisti-
cally significant factor contributing to fatalities when including the
few crashes involving riders 80 years and older but not when those
motorcyclists were excluded from the analysis. Another set of four
variables (small vehicle, passenger car, large vehicle, and none/
other) was specified to describe opponent vehicles involved in
multivehicle crashes. Small vehicle includes motorcycles, mopeds,
all-terrain vehicles (ATVs), and snowmobiles; passenger car
includes passenger cars, station wagons, vans, passenger vans, min-
ivans, and sport utility vehicles (SUVs); and large vehicle includes
trucks, tractors, and recreational vehicles (RVs). There is little
evidence of multicollinearity in the MCC data. No correlation
exceeded 0.45 and the condition number is 12.4, well below the
threshold of 30 proposed by Kennedy (2008).

Results

The results of the MNL estimation are presented in Table 3. The
table includes the coefficient estimates, standard errors, and

Table 2. Descriptive Statistics for Motorcycle Causal Crashes in Alabama

Variables Fatal injury (K) Severe injury (A) Minor injury (B)
Possible or

no injury (C and O) Total

Motorcyclist characteristics
1a. DUI 30 (9.7) 147 (4.9) 49 (4.7) 53 (2.8) 279 (4.5)
1b. Non-DUI 280 (90.3) 2,868 (95.1) 993 (95.3) 1,828 (97.2) 5,969 (95.5)
2a. Speeding 105 (33.9) 580 (19.2) 120 (11.5) 145 (7.7) 950 (15.2)
2b. No speeding 205 (66.1) 2,435 (80.8) 922 (88.5) 1,736 (92.3) 5,298 (84.8)
3a. Aggressive driving 7 (2.3) 33 (1.1) 34 (3.3) 15 (0.8) 89 (1.4)
3b. No aggressive driving 303 (97.7) 2,982 (98.9) 1,008 (96.7) 1,866 (99.2) 6,159 (98.6)
4a. Failed to yield right-of-way (ROW) 2 (0.6) 61 (2.0) 17 (1.6) 88 (4.7) 168 (2.7)
4b. Not failed to yield ROW 308 (99.4) 2,954 (98.0) 1,025 (98.4) 1,793 (95.3) 6,080 (97.3)
5a. Followed too close 2 (0.6) 133 (4.4) 61 (5.9) 198 (10.5) 394 (6.3)
5b. Not follow too close 308 (99.4) 2,882 (95.6) 981 (94.2) 1,683 (89.5) 5,854 (93.7)
6a. Age < 18 3 (1.0) 79 (2.6) 39 (3.7) 56 (3.0) 177 (2.8)
6b. 18 ≤ Age ≤ 25 63 (20.3) 580 (19.2) 225 (21.6) 379 (20.2) 1,247 (20.0)
6c. 26 ≤ Age ≤ 45 146 (47.1) 1,307 (43.4) 417 (40.0) 809 (43.0) 2,679 (42.9)
6d. 46 ≤ Age ≤ 65 59 (19.0) 627 (20.8) 219 (21.0) 354 (18.8) 1,259 (20.2)
6e. Age > 65 8 (2.6) 115 (3.8) 39 (3.7) 75 (4.0) 237 (3.8)
7a. Female 6 (1.9) 195 (6.5) 59 (5.7) 71 (3.8) 331 (5.3)
7b. Male 304 (98.1) 2,820 (93.5) 983 (94.3) 1,810 (96.2) 5,917 (94.7)
8a. Weekend 153 (49.4) 1,465 (48.6) 451 (43.3) 787 (41.8) 2,856 (45.7)
8b. Weekday 157 (50.7) 1,550 (51.4) 591 (56.7) 1,094 (58.2) 3,392 (54.3)

Crash-type characteristics
9a. Run off road 8 (2.6) 45 (1.5) 36 (3.5) 24 (1.3) 113 (1.8)
9b. Not run off road 302 (97.4) 2,970 (98.5) 1,006 (96.7) 1,857 (98.7) 6,135 (98.2)
10a. Intersection related 6 (1.9) 89 (2.9) 63 (6.1) 114 (6.1) 272 (4.4)
10b. Nonintersection related 304 (98.1) 2,926 (97.1) 979 (94.0) 1,767 (94.0) 5,976 (95.7)
11a. Small vehicle 3 (1.0) 75 (2.5) 28 (2.7) 61 (3.2) 167 (2.7)
11b. Passenger car 83 (26.8) 559 (18.5) 212 (20.4) 669 (35.6) 1,523 (24.4)
11c. Large vehicle 21 (6.8) 63 (2.1) 16 (1.5) 47 (2.5) 147 (2.4)
11d. None/other 203 (65.5) 2,318 (76.9) 786 (75.4) 1,104 (58.7) 4,411 (70.6)

Environmental characteristics
12a. Clear weather 257 (82.9) 2,377 (78.6) 857 (82.2) 1,586 (79.8) 5,077 (79.8)
12b. Adverse weather 53 (17.1) 648 (21.4) 186 (17.8) 402 (20.2) 1,289 (20.2)
13a. Lighting: Day, dawn, and dusk 176 (56.8) 2,092 (69.4) 731 (70.2) 1,376 (73.2) 4,375 (70.0)
13b. Dark condition 134 (43.2) 923 (30.6) 311 (29.9) 505 (26.9) 1,873 (30.0)

Roadway characteristics
14a. Curvature 162 (52.3) 1,186 (39.3) 307 (29.5) 467 (24.8) 2,122 (34.0)
14b. Straight 148 (47.7) 1,829 (60.7) 735 (70.5) 1,414 (75.2) 4,126 (66.0)
15a. Two-lane roads 209 (67.4) 2,091 (69.4) 670 (64.3) 1,105 (58.8) 4,075 (65.2)
15b. Other roads 101 (32.6) 924 (30.7) 372 (35.7) 776 (41.3) 2,173 (34.8)
16a. Rural locale 188 (60.6) 1,712 (56.8) 431 (41.4) 683 (36.3) 3,014 (48.2)
16b. Urban locale 122 (39.4) 1,303 (43.2) 611 (58.6) 1,198 (63.7) 3,234 (51.8)
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relative-risk ratios for all the variables for each severity category.

The coefficients of variables with less than 90% significance

were removed from the model. The fourth severity category, C

and O, was taken as the reference case with coefficients restricted
at zero.

IIA Assumption

The MNLmodel assumes IIA. Both the Hausman-McFadden (HM)
and Small-Hsiao (SH) tests were applied to the current model to test

for IIA violations (Hausman and McFadden 1984; Small and Hsiao

1985). The estimated HM and SH tests produced conflicting

evidence about whether the MCC data violate the IIA assumption.
Because the SH test uses two randomly generated subsamples, it

provides different estimates each time it is used, leading to a

situation in which not only do the HM and SH results sometimes

conflict with each other, but also the SH results conflict with one
another (Fry and Harris 1998). HM (Table 4) failed to find adequate

evidence to reject the null hypothesis, while SH (Table 5) rejected

the null hypothesis 86% of the time. These results are consistent

with research showing that when some cells contain a small
percentage of the total observations, HM and SH often reject

the null hypothesis even when it is valid (Cheng and Long

2007). Of the 148 cells in Table 3, 43 (29%) contain fewer than

112 (1.8%) observations, and there are two cells with only 2
(0.03%) observations each. The SH estimates in Table 5 provide

further evidence of the unreliability of the results: the interquartile

range of three of the four sets of estimates approximately lies be-

tween 40 and 160, which for a chi-squared distribution with 44

degrees of freedom gives a p value between 0.000 and 0.644. Based

on these findings, there is not enough evidence to conclude the IIA

assumption is violated.

Pseudoelasticity

The average pseudoelasticity (the average percentage change in

probability of an injury severity category when a variable switches

from 0 to 1 or 1 to 0) for each variable in the model is provided in

Fig. 2. The arrows indicate whether the probability of the respective

injury severity increases or decreases with an increase in the

variable given in the left column.

Table 3. Multinomial Logit Motorcycle Causal Crashes Severity Model Estimation Results

Variables

Fatal (K) Severe injury (A) Minor injury (B)

Coefficient
Relative
risk ratio Coefficient

Relative
risk ratio Coefficient

Relative
risk ratio

Motorcyclist characteristics
DUI 1.218 (0.257) 3.382 0.384 (0.170) 1.468 0.507 (0.210) 1.661
Speeding 1.552 (0.164) 4.721 0.761 (0.104) 2.141 0.435 (0.137) 1.545
Aggressive operation 1.253 (0.479) 3.501 1.516 1.528 (0.317) 4.611
Failed to yield right-of-way −1.677 (0.729) 0.187 0.795 −0.588 (0.279) 0.556
Followed too close −2.467 (0.722) 0.085 −0.388 (0.128) 0.678 0.810
18 ≤ Age ≤ 25 0.905 0.984 1.006
26 ≤ Age ≤ 45 1.008 0.990 0.823
46 ≤ Age ≤ 65 1.084 1.088 1.024
65 < Age 1.009 1.133 0.941
Female 0.598 0.588 (0.147) 1.800 0.434 (0.185) 1.543
Weekend 1.162 0.127 (0.062) 1.136 0.969

Crash characteristics
Run off road 0.935 (0.430) 2.547 0.861 0.853 (0.273) 2.346
Intersection related −0.884 (0.432) 0.413 −0.461 (0.150) 0.631 1.135
Small vehicle 0.626 0.762 0.712
Passenger car 0.587(0.159) 1.799 −0.531 (0.078) 0.588 −0.687 (0.104) 0.503
Large vehicle 1.884 (0.302) 6.579 0.919 −0.598 (0.298) 0.550

Environmental characteristics
Clear weather 1.263 0.950 0.193 (0.101) 1.212
Lighting: daylight −0.595 (0.135) 0.551 0.923 0.992

Roadway characteristics
Curvature 0.878 (0.145) 2.405 0.249 (0.072) 1.283 0.912
Two-lane roads −0.349 (0.150) 0.706 0.995 1.048
Rural locale 0.716 (0.144) 2.047 0.560 (0.068) 1.751 1.008

Note: Standard errors are in parentheses; coefficients that were not significant at the 90% level were restricted to zero and omitted from the table; possible or no
injury is the base case, with coefficients restricted at zero; number of oberservations = 6,248; log-likelihood for contants only = −7,252; log-likelihood at
convergence = −6,837; chi-square = 831; df ¼ 63; significance <0.001.

Table 4. Hausman-McFadden Independence of Irrelevant Alternatives
Test Results

Models tested
Test statistic

(chi-square value)
p

value
Hypothesis
results

Full model and model
with no injury excluded

46.771 0.359 Cannot
reject H0

Full model and model
with minor injury excluded

0.728 1.000 Cannot
reject H0

Full model and model
with severe injury excluded

0.451 1.000 Cannot
reject H0

Full model and model
with fatality excluded

−2.802a — Cannot
reject H0

aHausman and McFadden (1984) note that a negative test statistic is also
evidence that IIA holds.
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Motorcyclist Characteristics

Examination of Fig. 2 indicates that risky behaviors, exhibited by
DUI, speeding, and aggressive operation, clearly contribute to fatal
MCCs. The results are intuitive and are well supported by previous
research. DUI is a well-documented contributor to fatal motorcycle
crashes (Shankar and Mannering 1996; Clarke et al. 2004; Lardelli-
Claret et al. 2005; Savolainen and Mannering 2007b; Geedipally
et al. 2011; Schneider et al. 2012; Eustace et al. 2011). The RRRs
(Table 3) show that speeding has an increasing effect from least
severe crashes to most severe crashes. The pseudoelasticities in
Fig. 2 show that fatalities are 1.7 times more likely when the

motorcyclist is speeding. Both results are supported in the literature

(Chimba et al. 2006; Savolainen and Mannering 2007b; Eustace

et al. 2011; Rifaat et al. 2011). Moreover, the literature suggest that

these two risky behaviors, DUI and speeding, are both common to

risk-taking motorcyclists (Elliott et al. 2007; Haque et al. 2009;

Schneider et al. 2012). Finally, while not as strong of a contributor

as the other two, aggressive driving on the part of motorcyclists

increases the risk of fatality. Interestingly, aggressive driving is

an even stronger contributor to minor injury crashes and perhaps

reflects the effects of aggressive behavior such as excessive lane

changing that can lead to crashes not necessarily involving or

Table 5. Summary of 200 Small-Hsiao IIA Chi-Squared Statistics

Models tested Minimum
25th

percentile Median
75th

percentile Maximum
Proportion
rejecting H0

Full model and model
with no injury excluded

22.17 38.44 45.81 51.23 88.10 0.11

Full model and model
with minor injury excluded

21.68 40.79 120.30 159.80 800.90 0.51

Full model and model
with severe injury excluded

23.72 40.45 120.80 164.60 803.90 0.53

Full model and model with
fatality excluded

23.08 40.01 120.10 165.00 651.60 0.51

Fig. 2. Average direct pseudoelasticity of variables
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exacerbated by speed. Following too close is a behavior often
considered aggressive. The RRRs indicate that following too close
increases lower severity MCCs the most and Fig. 2 reaffirms that
this behavior is more associated with lower severity crashes. Both
results likely reflect the fact that this behavior is typically exhibited
at lower speeds.

With regard to motorcyclist demographics, the results indicate
no discernible relationship between age and crash injury severity.
This is an interesting result in that other researchers [e.g., Rutter
and Quine (1996)] have shown substantially increased severity
risks associated with younger riders. Female motorcyclists were
shown to be more likely to be in severe injury and minor injury
crashes than fatal crashes. While no data were available for this
study, other researchers have shown that women make up relatively
low percentages of motorcyclists. Furthermore, women are less
likely to engage in risky driving behavior associated with fatalities
but are nonetheless at risk for severe injury crashes. This may be a
result of lack of experience linked to women not riding motorcycles
as much or as often as their male counterparts (Savolainen and
Mannering 2007b; Eustace et al. 2011; Geedipally et al. 2011).

Weekend motorcycle crashes are slightly more likely to result in
fatalities or severe injuries. Weekend crashes are more likely to
involve drinking (Shaheed and Dissanayake 2011; Pai 2009)
and speeding (Pai 2009). Riders may be less cautious on the
weekend or a different, less experienced type of motorcyclist
may be more likely to ride on weekends.

Crash Characteristics

Run-off-road crashes contribute heavily to both fatal and minor
injury crashes. Even though fatal run-off-road crashes are often
related to DUI and speeding (Preusser et al. 1995; Shaheed and
Dissanayake 2011), running off the road appears to have a signifi-
cant effect on crash injury severity beyond dangerous motorcyclist
behaviors. The relationship between run-off-road crashes and
minor injuries likely reflects operator errors or other factors
(e.g., evasive maneuvers) at speeds low enough to not cause serious
injuries. The results indicate that intersection-related crashes have
higher rates of no injuries and minor injuries than fatalities or
severe injuries. The lower injury severity MCCs at intersections
is likely attributable to relatively low-speed rear-end and turn-
ing-maneuver collisions as suggested by Savolainen and Manner-
ing (2007b), Eustace et al. (2011), and Geedipally et al. (2011).

As suggested by Dupont et al. (2010), the type of vehicle with
which a motorcycle collides is perhaps the most important
contributor to crash injury severity. Fig. 2 indicates fatalities are
approximately 1.5 times more likely in collisions with passenger
vehicles and 5 times more likely in collisions with large vehicles.
The RRRs (Table 3) show similar increased severity risks with
larger opponent vehicles.

Environmental Characteristics

No strong indicators were identified among the environmental
characteristics. Both the RRRs and pseudoelasticities suggest that
clear weather somewhat increases the probability that a crash is
fatal. This is likely due to motorcycling being predominantly a
leisure activity that occurs during times (days and seasons) with
better weather (Shaheed and Dissanayake 2011). However, if they
do ride in adverse weather conditions, motorcyclists are expected to
ride more carefully (Kim et al. 2002; Haque et al. 2012). The results
in Fig. 2 also show a negative relationship between fatal crashes
and the daytime lighting conditions. These results agree with
previous studies (Chimba et al. 2006; Savolainen and Mannering

2007b; Eustace et al. 2011) and suggest that nighttime riding in
itself is not a major factor contributing to crash severity.

Roadway Characteristics

Roadway curvature doubles the probability that a crash is fatal and
also increases the likelihood of severe injuries. While this result is
consistent with previous research (Kim et al. 2002; Chimba et al.
2006; Savolainen and Mannering 2007b; Eustace et al. 2011;
Geedipally et al. 2011; Shaheed and Dissanayake 2011), the
Alabama results are particularly pronounced. Fatalities are almost
30% less likely on two-lane roads in Alabama.

Injury severities are higher for rural MCCs. These results concur
with previous research (Kim and Boski 2001; Kim et al. 2002; Clarke
et al. 2004; Geedipally et al. 2011). This may be because motor-
cyclists drive less carefully when there are fewer vehicles around.
Indeed, they are more likely to be at fault for crashes at rural
nonintersection locations (Kim and Boski 2001). Other contributing
factors may include higher speed limits than nonrural locations with
otherwise similar characteristics (Geedipally et al. 2011).

Summary and Conclusions

The analysis has identified several factors influencing the severity
of MCCs in Alabama. The most important factors include
motorcyclist behavior, opponent vehicle, and roadway geometry.
Motorcyclists face greater risk when they speed, drive aggressively,
or operate under the influence. Motorcyclists who run off the road
or hit another vehicle, especially large vehicles, are much more
likely to be killed. Injury severity increases slightly on weekends
and was shown to be greater for MCCs occurring in roadway
curves and on rural roads.

The results suggest that the primary factors influencing severity of
crashes caused by motorcyclists are related to motorcyclist behavior.
In addition to reducing behaviors generally considered as aggressive,
it would appear that considerable safety benefit could be derived
from efforts to alter motorcyclist behavior (or awareness) in the vicin-
ity of large vehicles, around roadway curves, and in rural areas. With
some 70% of motorcycle crashes in Alabama resulting in injury
or death, there is considerable potential for positive impact on
motorcycle safety from policies and programs that address the
behavior-related crashes identified in this study.

There are three general categories of tools available to influence
motorcyclist behavior: enforcement, signage, and education and
outreach. It is well documented that enforcement reduces the
frequency (Makowsky and Stratmann 2011; Corsaro et al. 2012)
and severity (Corsaro et al. 2012) of crashes. The results of this
study indicate that targeted enforcement of aggressive motorcyclist
behavior could improve safety. While development of a detailed
enforcement plan is beyond the scope of this paper, one effective
way to reduce these behaviors may be to increase the incentives
officers face to enforce motorcycle laws (Tsebelis 1989). With
regard to signage, Section 2C.33 of the Manual on Uniform Con-

trol Devices (MUTCD) provides for signage targeted specifically
for motorcyclists (e.g., W8-15P) in the context of grooved
pavement (W8-15) and metal bridge decks (W8-16) as well as other
conditions affecting overall roadway surface conditions as set out in
Section 2C.32 (U.S. Dept. of Transportation 2009). Use of the
W8-15P sign should be encouraged where applicable and where
engineering judgment deems appropriate, especially in curved
roadway sections and rural areas. Finally, motorcycle education
and outreach programs can be updated and improved to reflect
these findings. For example, motorcyclist training in Alabama is
largely based on the Basic Rider Course, Rider Handbook
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published by the national Motorcycle Safety Foundation (2007).
While it is an excellent source of information, it does not explicitly
address the increased danger associated with large vehicles reported
in this study.

The proposed MNL model was shown to be useful and appro-
priate for modeling motorcycle crash severity for the Alabama data.
Specifically, it identified the significant variables affecting the
severity of MCCs. It is recommended that a separate study be
conducted on motorcycle crashes caused by vehicles other than
motorcycles (i.e., cars, trucks) to identify any interesting influenc-
ing factors in Alabama.
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