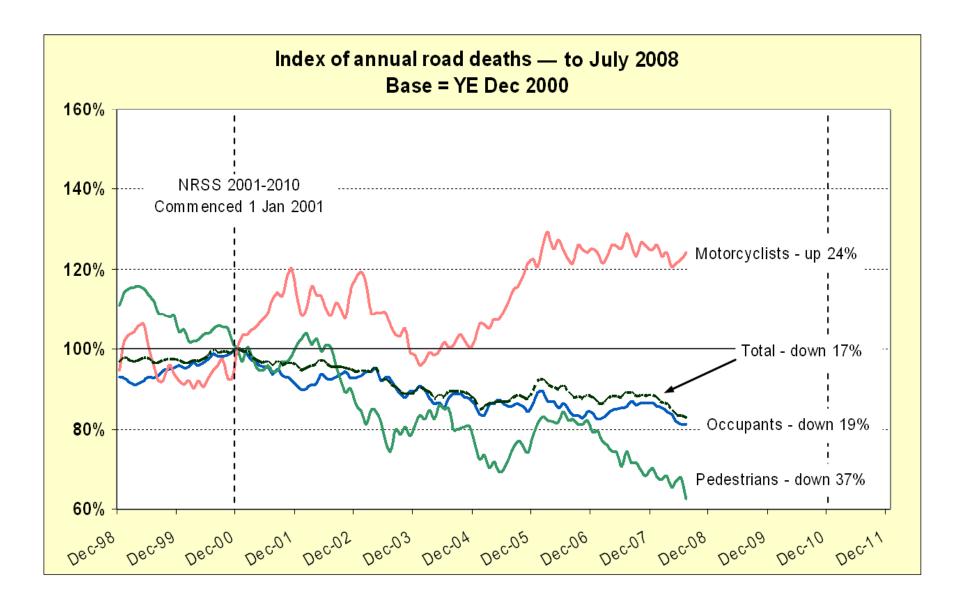

# Motorcycle crashes into roadside & median road safety barriers




#### **Raphael Grzebieta**

THE UNIVERSITY OF NEW SOUTH WALES

**NSW Injury Risk Management Research Centre** 





Source: Road Safety Strategy Panel

Road Safety Branch, Infrastructure and Surface Transport Policy, Department of Infrastructure, Transport, Regional Development and Local Government

#### Road deaths by road user group and crash type

|                                             | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | Change:<br>last two years<br>relative to first<br>two years |  |
|---------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------------------------------------------------|--|
| Vehicle occupant<br>single vehicle crash    | 577   | 648   | 604   | 658   | 634   | 598   | 594   | 619   | 645   | 3%                                                          |  |
| Vehicle occupant<br>multiple vehicle crash  | 670   | 654   | 579   | 548   | 532   | 524   | 527   | 473   | 486   | -28%                                                        |  |
| Pedestrian                                  | 299   | 287   | 290   | 249   | 232   | 220   | 225   | 227   | 202   | -27%                                                        |  |
| Motorcyclist: single<br>vehicle crash       | 66    | 80    | 89    | 101   | 61    | 80    | 94    | 112   | 103   | 47%                                                         |  |
| Motorcyclist: multiple vehicle crash        | 110   | 111   | 127   | 123   | 127   | 115   | 139   | 126   | 135   | 18%                                                         |  |
| Bicyclist: single<br>vehicle crash          | 2     | 3     | 3     | 1     | 4     | 10    | 11    | 4     | 4     | -                                                           |  |
| Bicyclist: multiple<br>vehicle crash        | 38    | 28    | 43    | 33    | 22    | 33    | 30    | 35    | β7    | 9%                                                          |  |
| Articulated truck<br>single vehicle crash   | 20    | 25    | 18    | 31    | 20    | 26    | 28    | 23    | 32    | 22%                                                         |  |
| Articulated truck<br>multiple vehicle crash | 154   | 165   | 142   | 153   | 138   | 110   | 116   | 124   | 121   | -23%                                                        |  |
| Articulated truck<br>pedestrian crash       | 17    | 18    | 18    | 16    | 13    | 14    | 11    | 21    | 19    | 14%                                                         |  |
| All road users                              | 1,764 | 1,817 | 1,737 | 1,715 | 1,621 | 1,583 | 1,627 | 1,598 | 1,612 | -10%                                                        |  |

Source: Road Safety Strategy Panel

Road Safety Branch, Infrastructure and Surface Transport Policy,

Department of Infrastructure, Transport, Regional Development and Local Government

Partners

- WA Office of Road Safety & WA Main Roads
- Australian Automobile Association
- NSW Centre for Road Safety (RTA)
- NSW Motor Accidents Authority
- Transit New Zealand



Research Investigators

- Raphael Grzebieta (barriers)
- Andrew McIntosh (biomechanics)
- Rena Friswell (causation & epidemiology)
- Hussein Jama (analysis & modelling)
- Jake Olivier (biostatistics)
- Rob Smith (motorcycle expert)



Methodology

- Statistics (fatalities & serious injury)
- Determine causal factors (other vehicle, speed, alcohol, fatigue, bad cornering, inexperience, human error?, etc)



Determine biomechanical injury causal mechanism

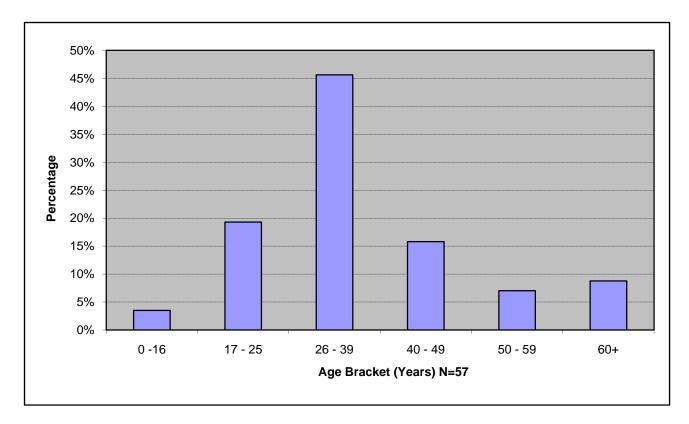
#### Methodology

- Determine survivable and non-survivable impact envelopes
- Reconstruct crashes & computer simulation
- Develop / investigate injury mitigation strategies and assess their effectiveness
- Carry out crash tests




2001 - 2006 National Coroners Information System data

In-depth investigation of fatal crashes where information is available


In-depth investigation of serious injury crashes through trauma centres & recruitment will also be carried out



#### National Coroners Information System - preliminary findings



National Coroners Information System data 2001-2006

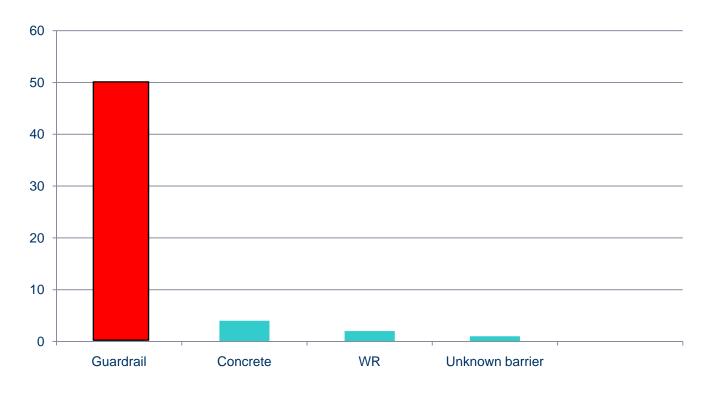




National Coroners Information System data 2001-2006 (n=57 fatalities)

• Gender

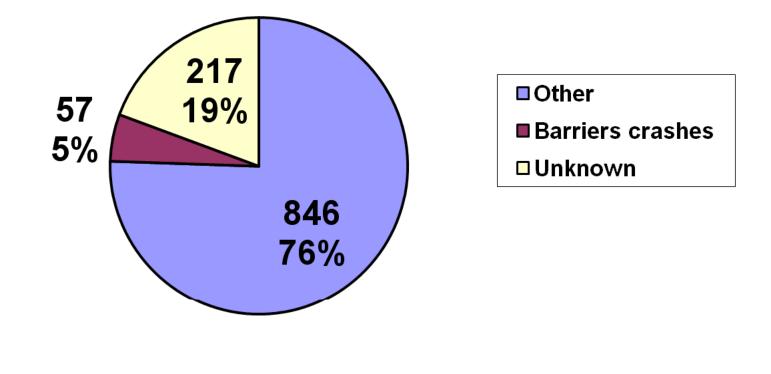
Male 52 Females 5


Rider & Pillion

Rider & pillion 4 (fatal crashes) (3 female pillions killed and 1 male rider)

Rider only - 53

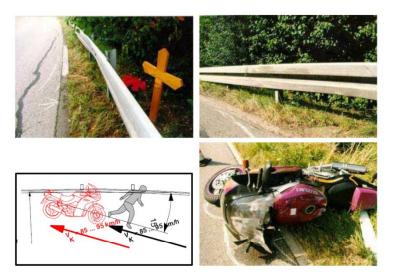



## National Coroners Information System data 2001-2006





National Coroners Information System data


#### Australian total so far (excluding WA)





Other studies DEKRA – Germany

- 82% involved a steel barrier
- 51% of 57 cases analysed motorcycle impacted the barrier while driving in an upright position





• 45% occurred where the motorcycle slid on its side on the road surface before it first struck the barrier.

Berg A., Rücker P., Gärtner M., König J., Grzebieta R.H., Zou R., Motorcycle Impacts to Roadside Barriers – Real World Accident Studies and Crash Tests Carried out in Germany and Australia, *Proc. 19<sup>th</sup> International Technical Conference on the Enhanced Safety of Vehicles,* Washington, USA, June 2005.

#### USA Gabler

- 39% of guardrail fatalities & 24% of concrete barrier fatalities but only 3% of registered vehicles
- Motorcycle guardrail impact 80 times higher risk than car/LTV

Motorcycle Crashes with Roadside Barriers: the US Experience



- Motorcycle concrete barrier 68 times higher risk than car/LTV
- \$0.5 million dollar US "in-depth" TRB study of barrier fatalities

Gabler H., The Risk Of Fatality In Motorcycle Crashes With Roadside Barriers, 20th International Technical Conference on the Enhanced Safety of Vehicles, Lyon, Paper Number 07-0474, France, June 2007



## What is a survivable impact?









#### **Motorcyclist - What is a survivable impact?**

Hitting an object at 30 km/h is equivalent to jumping off the roof of a house.

At 40 km/h is equivalent to jumping off a 3 story building and hoping you will survive.

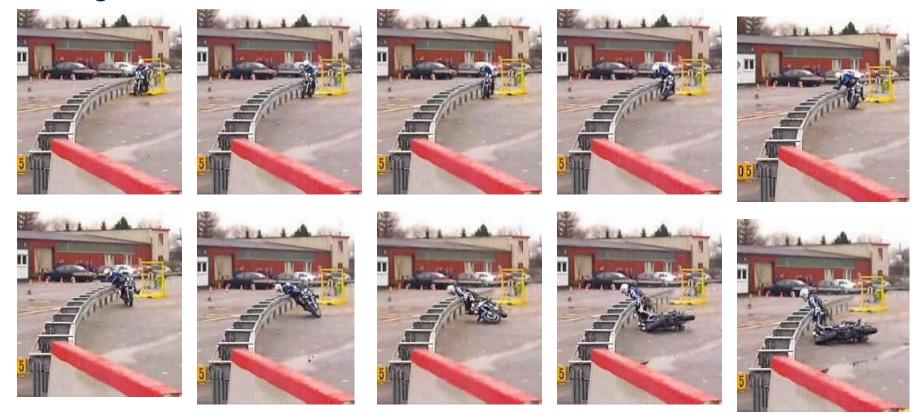
At 50 km/h it is equivalent to jumping off a 5 storey building.

At 60 km/h, jumping off a 7 story building.



#### Rider is thrown over concrete barrier into hazard.




Berg A., Rücker P., Gärtner M., König J., Grzebieta R.H., Zou R., Motorcycle Impacts to Roadside Barriers – Real World Accident Studies and Crash Tests Carried out in Germany and Australia, *Proc. 19<sup>th</sup> International Technical Conference on the Enhanced Safety of Vehicles,* Washington, USA, June 2005.

#### Rider is thrown over concrete barrier into hazard.



Berg A., Rücker P., Gärtner M., König J., Grzebieta R.H., Zou R., Motorcycle Impacts to Roadside Barriers – Real World Accident Studies and Crash Tests Carried out in Germany and Australia, *Proc. 19<sup>th</sup> International Technical Conference on the Enhanced Safety of Vehicles,* Washington, USA, June 2005.

Rider thrown onto steel barrier, elbow is torn when it strikes blockout & stomach cut apart when sliding along rail sharp edge.



Berg A., Rücker P., Gärtner M., König J., Grzebieta R.H., Zou R., Motorcycle Impacts to Roadside Barriers – Real World Accident Studies and Crash Tests Carried out in Germany and Australia, *Proc. 19th International Technical Conference on the Enhanced Safety of Vehicles,* Washington, USA, June 2005.

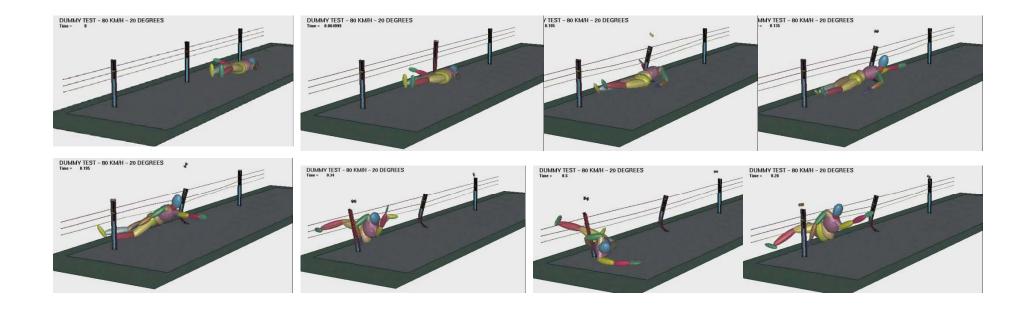
#### Rider slides and hits post at shoulder



Berg A., Rücker P., Gärtner M., König J., Grzebieta R.H., Zou R., Motorcycle Impacts to Roadside Barriers – Real World Accident Studies and Crash Tests Carried out in Germany and Australia, *Proc. 19<sup>th</sup> International Technical Conference on the Enhanced Safety of Vehicles,* Washington, USA, June 2005.

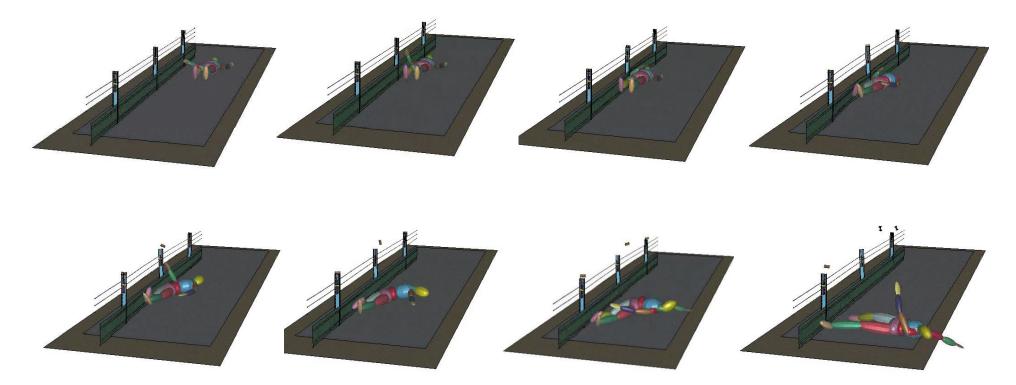
#### Rider impacts & slides along rubrail instead of post




Berg A., Rücker P., Gärtner M., König J., Grzebieta R.H., Zou R., Motorcycle Impacts to Roadside Barriers – Real World Accident Studies and Crash Tests Carried out in Germany and Australia, *Proc. 19th International Technical Conference on the Enhanced Safety of Vehicles,* Washington, USA, June 2005.

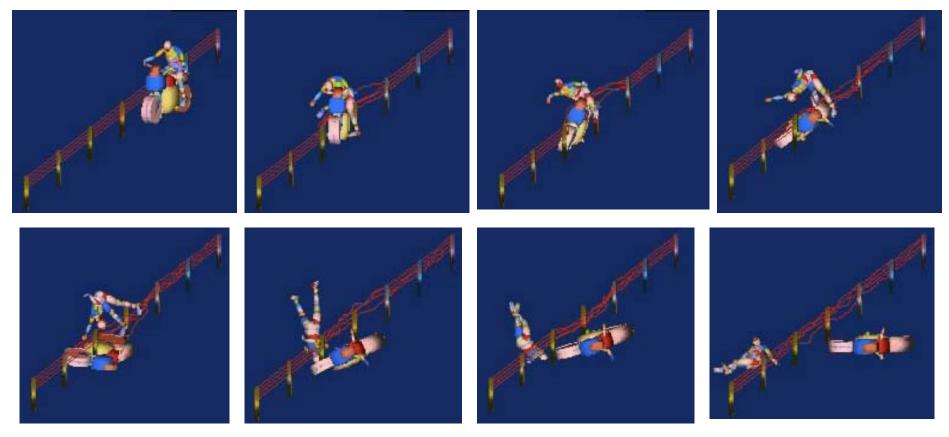
#### Rider is thrown over barrier into hazard.




Berg A., Rücker P., Gärtner M., König J., Grzebieta R.H., Zou R., Motorcycle Impacts to Roadside Barriers – Real World Accident Studies and Crash Tests Carried out in Germany and Australia, *Proc. 19th International Technical Conference on the Enhanced Safety of Vehicles,* Washington, USA, June 2005.

#### Rider slides and hits post and bends them




Reproduced with kind permission of Prof Marco Anghileri, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Italy.

#### Rider slides along fabric instead of hitting posts



Reproduced with kind permission of Prof Marco Anghileri, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Italy.

## Motorcycle snags on posts and rider ejected over top of wire rope barrier



Berg A., Rücker P., Gärtner M., König J., Grzebieta R.H., Zou R., Motorcycle Impacts to Roadside Barriers – Real World Accident Studies and Crash Tests Carried out in Germany and Australia, *Proc. 19th International Technical Conference on the Enhanced Safety of Vehicles,* Washington, USA, June 2005.

## Concrete at 80 km/hr @ 45° – Not survivable





## Concrete at 80 km/hr @ 45° – Not survivable



Grzebieta R.H., Zou R., Corben B., Judd R., Kulgren A., Tingval C. and Powell C., Roadside Crash Barrier Testing, Proceedings ICRASH2002, 3<sup>rd</sup> International Crashworthiness Conference, Society of Automotive Engineers Australia, Melbourne, February 2002.

## **Car barrier crashes.**

### Car redirected by wire-rope with low deceleration Survivable crash



Grzebieta R.H., Zou R., Corben B., Judd R., Kulgren A., Tingval C. and Powell C., Roadside Crash Barrier Testing, Proceedings ICRASH2002, 3<sup>rd</sup> International Crashworthiness Conference, Society of Automotive Engineers Australia, Melbourne, February 2002.

## Wire rope 80 km/hr @ 45° – very survivable and soft crash – airbags did not fire



Vehicle redirected and can still be driven

# Must comply with crash barrier standard AS3845 for cars as well.

#### Vehicle should not ride over barrier



Grzebieta R.H., Cameron J., Carey A. and Zou R., Water-filled plastic safety barrier systems, *Road & Transport Research*, Vol.10, No.3, Sept., 2001.

## Barrier cannot be breached for all vehicles

#### Vehicle should not ride over barrier



## **Wire rope barriers - Statistics**

#### **Data Compiled by Nicholas Szwed - Vicroads**

|                   |                | Rur   | 1-off-I          | road | cras |       |       |                 |    |   |      |
|-------------------|----------------|-------|------------------|------|------|-------|-------|-----------------|----|---|------|
| Location          |                |       | After            |      |      |       |       |                 |    |   |      |
|                   | Length<br>(km) | Years | Casualty Crashes |      |      |       | Years | Casualty Crashe |    |   | shes |
|                   |                |       | F                | SI   | 0    | Total |       | F               | SI | 0 | Tota |
| Eastern Fwy       | 8              | 10    | 2                | 16   | 20   | 38    | 1     | 0               | 2  | 0 |      |
| Geelong Rd        | 5              | 5     | 3                | 7    | 6    | 16    | 3     | 0               | 0  | 0 |      |
| Frankston Fwy (1) | 0.42           | 5     | 1                | 2    | 1    | 4     | 5     | 0               | 0  | 0 |      |
| Frankston Fwy (2) |                | 5     | 1                | 1    | 1    | 3     | 3     | 0               | 1  | 0 |      |
| Hume Fwy (1)      | 1.25           | 5     | 2                | 2    | 2    | 6     | 3     | 0               | 0  | 0 |      |
| Hume Fwy (2)      | 2              | 5     | 0                | 5    | 3    | 8     | 3     | 0               | 0  | 0 |      |
| Total ~           | 17             | 35    | 9                | 33   | 33   | 75    | 18    | 0               | 3  | 0 |      |
|                   |                |       |                  |      |      |       |       |                 |    |   |      |

Before-and-after crash summary

#### **Wire-rope barrier installation**

 RTA – reductions of around 70-80% in fatalities – lowest road fatalities now in the Australia as a result in part of wire rope and tactile line marking – 5.6 per 100,000.



#### **Wire-rope barrier installation**

Arne Carlsson, Evaluation of 2+1 Roads With Cable Barrier, Swedish Road Administration, VTI Rapport 636A

- Sweden has noted similar reductions of around 76-82% in road trauma where such barriers have been introduced
- Motorcycle fatality reduction of 40-50%



#### **Wire-rope barrier installation**

 US DOT's are observing similar gains on their high volume (and high speed) freeways in North Carolina. Around 80-90% reductions in trauma.



## **Summary**

- Motorcycle fatalities resulting from roadside barriers crashes are low at around 5-6% which is around 14 per year nation wide of 238 fatalities.
- Guardrail impacts are the most dangerous.
- Only 1 wire-rope rider impact found in WA excessive speed striking another vehicle before striking barrier. Most likely died on impact with vehicle.



## Summary

- Concrete barrier impacts can also be dangerous but very low – 4 fatalities
- Guardrail impacts are the most dangerous and often struck.
- Wire-rope impacts are rare. 70 80% reduction in road fatalities wherever installed which is why they are being installed.
  - Solutins exist to reduce motorcycle fatalities

     but credible science must be used so as
     not to effect all road users and gains to date

