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Abstract The “low-prevalence effect” refers to the fact that
observers often fail to detect rare targets (<5 % prevalence)
during visual search tasks. Previous research has demonstrat-
ed robust prevalence effects in real-world tasks that employ
static images, such as airport luggage screening. No published
research has examined prevalence effects in dynamic tasks,
such as driving. We conducted a driving simulator experiment
to investigate whether target prevalence effects influence the
detection of other vehicles while driving. The target vehicles
were motorcycles and buses, with prevalence being manipu-
lated both within and between subjects: Half of the subjects
experienced a high prevalence of motorcycles with a low
prevalence of buses, and half experienced a high prevalence
of buses with a low prevalence of motorcycles. Consistent
with our hypotheses, drivers detected high-prevalence targets
faster than low-prevalence targets for both vehicle types.
Overall, our results support the notion that increasing the
prevalence of visual search targets makes them more salient,
and consequently easier to detect.

Keywords Visual search . Attention . Perception . Driving

Highly developed visual search abilities are crucial for driv-
ing, to the extent that recently developed training programs
have explicitly sought to improve these skills (e.g., Fisher,

Pollatsek, & Pradhan, 2006). Drivers must search for “haz-
ards,” and the failure to detect hazards is a prominent cause of
serious-injury crashes (Beanland, Fitzharris, Young, & Lenné,
2013). Search criteria are often only vaguely defined: Poten-
tial hazards may include pedestrians, motorcycles, cars, and
other vehicles. Driving-related search targets are therefore
incredibly diverse and vary in terms of their size, salience,
and prevalence on the roads. Laboratory research indicates
that varying both the prevalence and physical properties of
targets can affect observers’ ability to detect a target (Wolfe,
2007). Some field research has suggested that these factors
may exert similar influence over hazard detection; drivers are
more likely to “look but fail to see” an oncoming motorcycle,
rather than a car (Brooks et al., 2005; Van Elslande, Fournier,
& Jaffard, 2012). Experimental research on visual search
while driving has manipulated target size and salience, but
not target prevalence. When different target types appear with
equivalent prevalences, drivers are faster and better at detect-
ing larger, more salient road users, such as cars versus motor-
cycles, or motorcycles versus pedestrians (Cavallo & Pinto,
2012; Crundall, Humphrey, & Clarke, 2008). However, in the
real world, target size and salience often covary with target
prevalence: Larger targets such as cars are more common than
smaller targets such as motorcycles. This is relevant because
observers are more likely to miss low-prevalence targets, as
compared to medium- or high-prevalence targets (Schwark,
MacDonald, Sandry, & Dolgov, 2013; Schwark, Sandry,
MacDonald, & Dolgov, 2012; Wolfe, Horowitz, & Kenner,
2005; Wolfe et al., 2007; Wolfe & Van Wert, 2010).

Research on target prevalence effects grew out of an at-
tempt to develop lab-based tasks that would better reflect real-
world search conditions. In traditional lab-based search tasks,
the target usually appears on 50 % of the trials. This forces the
observer to search carefully on every trial in order to make an
accurate judgment, since the target has a 50 % probability of
appearing. In contrast, many real-world tasks (including

V. Beanland (*) :M. G. Lenné
Monash University Accident Research Centre, Monash Injury
Research Institute, Monash University, Clayton, VIC 3800, Australia
e-mail: vanessa.beanland@anu.edu.au

V. Beanland
Research School of Psychology, Australian National University,
Canberra, ACT 0200, Australia

G. Underwood
School of Psychology, University of Nottingham, Nottingham, UK

Atten Percept Psychophys (2014) 76:805–813
DOI 10.3758/s13414-013-0603-1

Author's personal copy



driving) involve searching for targets that rarely appear. Ex-
periments varying target prevalence have revealed that low-
prevalence targets, which appear on <5 % of trials, are missed
more frequently than medium-prevalence targets, which ap-
pear on 50 % of trials (Rich et al., 2008; Schwark et al., 2012;
Wolfe et al., 2005; Wolfe et al., 2007). Very high-prevalence
targets, which appear on >95 % of trials, are unlikely to be
missed, but observers tend to make more false alarms on the
few target-absent trials that do occur (Schwark et al., 2013;
Wolfe & Van Wert, 2010). Prevalence effects update continu-
ously; misses decrease during small bursts of high target
prevalence, but increase again if prevalence decreases
(Wolfe et al., 2007). Robust prevalence effects have been
observed across a range of search tasks, including simple
“pop-out” search (Rich et al., 2008). In relatively easy search
tasks, missing low-prevalence targets may be due to motor
errors: Participants are so used to pressing the target-absent
button that they press it somewhat automatically (Fleck &
Mitroff, 2007; Rich et al., 2008). As such, prevalence effects
may be eliminated in easy tasks if observers are given an
opportunity to “correct” their response (Fleck & Mitroff,
2007). In more difficult tasks, prevalence effects persist even
when search is correctable, indicating that errors due to vary-
ing target prevalence result from cognitive factors rather than
being purely motor errors (Van Wert, Horowitz, & Wolfe,
2009).

To account for the errors observed when target prevalence
is varied, Wolfe and Van Wert (2010) proposed a multiple-
decision model of visual search. The first stage is an internal
two-alternative forced choice (2AFC) decision, in which the
observer must judge whether the target is present or absent. If
the target is detected (for single-target displays), search is
terminated after this stage. If the target is absent, or if the
target is not detected, then search continues until the ob-
server’s quitting threshold is reached. Varying prevalence
affects both the internal decision criterion and the quitting
threshold. When target prevalence is low, the internal 2AFC
decision criterion is shifted so that target-absent judgments are
more likely, which is reflected by signal detection analyses
revealing a shift in criterion (C ) but not in sensitivity (d′) as a
result of the changing target prevalence (Schwark et al., 2013;
Schwark et al., 2012; Wolfe & Van Wert, 2010). The quitting
threshold is also lowered, such that search will be terminated
more rapidly when the target is not found (Wolfe & VanWert,
2010). More recent work has suggested that search termina-
tion can involve either search-based or prevalence-based de-
cisions (Schwark et al., 2013). In search-based decisions,
observers conduct a comprehensive search for the target and
will likely respond “target absent” if they fail to detect the
target before reaching their quitting threshold. In prevalence-
based decisions, the quitting threshold is shifted, but its out-
come is also influenced by knowledge of the target preva-
lence. When target prevalence is low, observers will record a

“target absent” response when they reach their quitting thresh-
old (resulting in either a miss or a correct rejection), but when
target prevalence is high, they will register a “target present”
response (resulting in either a hit or a false alarm). The notion
of prevalence-based decisions is supported by the fact that
false feedback influences both miss and false alarm rates
(Schwark et al., 2013; Schwark et al., 2012), indicating that
prevalence effects result from the perceived prevalence, rather
than the actual prevalence, of targets.

Target prevalence effects have been demonstrated in sev-
eral real-world tasks, including medical image screening
(Evans, Evered, Tambouret, Wilbur, & Wolfe, 2011) and
airport luggage screening (Wolfe et al., 2005; Wolfe et al.,
2007). The search demands of luggage screening and hazard
perception while driving are similar: Both require the observer
to search for targets that appear infrequently and are poten-
tially dangerous, but that are only vaguely defined (i.e., a
“weapon” or a “hazard” has no fixed definition or physical
characteristics). There are also notable differences between the
tasks. Previous research on target prevalence effects has ex-
clusively used discrete static images, with observers being
required to make an explicit present–absent judgment on each
trial. Driving involves searching continuously in a dynamic,
interactive, three-dimensional environment. Drivers usually
respond only when they detect a potential target, and must
therefore alter their driving behavior (e.g., by braking or
swerving to avoid a collision). As such, particularly given
the finding that some prevalence effects are attributable to
motor errors, it is not clear whether the same pattern of results
would be obtained by varying target prevalence in a dynamic,
interactive task such as driving.

In addition to being dynamic, search targets while driving
are constrained in that they can plausibly only appear in a few
locations (i.e., on or near the road). Previous studies investi-
gating prevalence effects have used stimuli with few or no
semantic constraints on the target placement, meaning that the
target could appear anywhere in the display. This is relevant
because, in arbitrary arrays, eye movements may be guided
primarily by salience (e.g., Itti & Koch, 2000), which means
that if the target does not possess distinct physical features it
may not capture attention. In contrast, eye movements in real-
world scenes are guided by context, meaning that observers
first search for a target in the region where it is most likely to
appear (e.g., Tatler, Hayhoe, Land, & Ballard, 2011; Torralba,
Oliva, Castelhano, & Henderson, 2006). For example, if the
target were a person within a city scene, then the observer
would first search the sidewalk, even if other areas of the
image had greater salience or contrast. Subjective experience
can also alter scanning patterns: If observers have relevant
expertise (e.g., a history student viewing a photograph of
artifacts from the US Civil War), then they focus less on
physically salient areas and more on semantically meaningful
areas (Humphrey & Underwood, 2009). Similarly, evidence
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suggests that drivers optimize their scanning patterns so that
they focus on areas where the most dangerous hazards (e.g.,
cars and other large vehicles) are most likely to appear, which
can be at the expense of detecting less common hazards, such
as cyclists (Summala, Pasanen, Räsänen, & Sievänen, 1996).
It makes sense that target prevalence would influence ob-
servers’ quitting thresholds when stimuli are arbitrarily ar-
ranged, since the alternative would be to conduct an exhaus-
tive search of the entire array, but it is unknown whether
prevalence effects may still occur when observers are able to
use contextual information to guide their search.

In the present study, we aimed to investigate whether target
prevalence effects occur during simulated driving by requiring
observers to detect target vehicles in surrounding traffic. Mo-
torcycles are one obvious candidate for studies of prevalence
effects while driving: They are frequently acknowledged as
“rare hazards,” because they are minority vehicles with dis-
proportionate crash involvement. Most relevantly, a leading
cause of car–motorcycle crashes is the car driver failing to see
or misperceiving the motorcycle (Association des
Constructeurs Européens de Motocycles, 2009). These per-
ceptual difficulties appear to be partly due to the small size and
low salience of motorcycles, and most research has focused on
treatments to increase motorcycle salience—for example, by
improving headlight design (e.g., Rößger, Hagen,
Krzywinski, & Schlag, 2012; Smither & Torrez, 2010). How-
ever, it is impossible to fully equate the physical characteris-
tics of a motorcycle with those of a car. Furthermore, “dual
drivers,” who also ride motorcycles, are less likely to be
involved in car–motorcycle crashes (Magazzù, Comelli, &
Marinoni, 2006), and it has been suggested that familiarity
with motorcycles makes drivers more efficient and cautious
when detecting and responding to motorcycles (Crundall,
Crundall, Clarke, & Shahar, 2012; Mitsopoulos-Rubens &
Lenné, 2012; Underwood, Humphrey, & Van Loon, 2011).
These findings, while being limited due to their correlational
nature, suggest that it may be possible to improve drivers’
detection of motorcycles through top-down mechanisms that
influence their expectations.

The experiment consisted of two phases: a preexposure
drive and a detection drive. To ensure that the observed effects
would genuinely be due to target prevalence, rather than other
stimulus attributes, two target vehicles were used: motorcycles
and buses, which each constitute approximately 1 % of traffic
in Australia (Australian Bureau of Statistics, 2013). In the
preexposure drive, participants were exposed to a high prev-
alence of either motorcycles or buses; this phase was designed
to assess whether prevalence effects occur in situations in
which observers do not have to actively detect targets (i.e.,
passive exposure). In the subsequent detection drive, partici-
pants were required to actively detect both motorcycles and
buses. Target prevalence was manipulated both within and
between subjects: Half of the participants experienced a high

prevalence of buses and a low prevalence of motorcycles, and
the other half experienced the reverse prevalences. It was
hypothesized that during the detection drive, drivers would
be more likely to detect high-prevalence targets and would
detect them faster than low-prevalence targets, regardless of
vehicle type.

Method

Participants

A group of 40 licensed drivers (22 female, 18 male; M age =
31.9 years, SD = 7.9) with normal or corrected-to-normal
visual acuity provided written informed consent and received
financial compensation. The drivers drove an average of
10.3 h/week (SD = 6.6) and had held their car licenses for
an average of 13.1 years (SD = 8.0). The data for three
additional participants was discarded due to simulator sick-
ness (n = 1), a previous motorcycle license (n = 1), and failure
to follow the instructions (n = 1). Drivers were excluded if
they had ever held a motorcycle or bus license, to eliminate
any potential bias due to personal experience with these
vehicles.

Apparatus

Simulator drives were conducted in an ECA Faros EF-X
driving simulator, which comprises a stationary right-hand
drive vehicle cab with genuine vehicle parts, including a
steering wheel and dashboard, foot pedal brake and accelera-
tor, gear box, and adjustable seat and seat belt. The road
environment is projected via three 19-in. LCD screens, which
provide a 120° horizontal field of view.

Stimuli

Participants completed two simulator drives. Both drives fea-
tured urban roads with one lane in each direction, intersections
every 300–500 m, and a 60 km/h (37 mph) speed limit. The
level of traffic was relatively constant and composed entirely
of passenger cars, except for the target vehicles. Target color
(high-salience white or low-salience gray) and location (left,
right, or oncoming) were varied in a pseudorandom order,
creating six possible variations of each target. “Left” and
“right” targets appeared stationary, as the first vehicles waiting
at intersections. “Oncoming” targets approached from the
opposite direction and passed the driver midblock. The target
vehicles were theoretically visible from 500 m away, at
which point the motorcycle would subtend approximately
0.17° × 0.11° × 0.28° of visual angle (height × width ×
length), and the bus would subtend 0.31° × 0.30° ×
1.32°. At a distance of 5 m (which is effectively the
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minimum distance before the driver passes the target
vehicle), the motorcycle would subtend 17.1° × 11.4° ×
27.0°, and the bus would subtend 30.2° × 29.2° × 98.0°.

The preexposure drive was 7.5 km (4.7 mi.) long and
contained 40 target vehicles. In the “motorcycle” preexposure
drive, all of the target vehicles were motorcycles, and in the
“bus” preexposure drive, all of the targets were buses.

The detection drive was 39 km (24 mi.) long and
contained 126 targets. In the “motorcycle high preva-
lence” detection drive, 120 targets were motorcycles
and six targets were buses; in the “bus high prevalence”
detection drive, 120 targets were buses and six were
motorcycles. Equal numbers of targets appeared in each
color and location.

Procedure

Participants were told that the purpose of the study was to
examine drivers’ behavior and performance in urban traffic
environments. For the preexposure drive, participants were
instructed to follow the road without turning at intersections
and to obey normal road rules, including traffic signals and
speed limits. They were explicitly instructed to pay attention
to the surrounding traffic but were not required to detect or
identify any specific vehicles. For the subsequent detection
drive, in addition to the driving task, participants used two
custom-made buttons on the steering wheel to indicate every
time they detected a motorcycle or bus. Participants were also
asked to verbally identify the target, to verify accuracy. They
were informed that both response time and accuracy were
important. Participants then completed the detection drive,
which lasted approximately an hour, including breaks. At
the conclusion of the study, the participants were fully
debriefed about the experimental aims.

Design

Participants were equally distributed across four experimental
conditions. Target prevalence was manipulated between sub-
jects in a 2 (preexposure: high motorcycle prevalence, high
bus prevalence) × 2 (detection drive: high motorcycle/low bus
prevalence, low motorcycle/high bus prevalence) design. Tar-
get salience (high, low) and location (left, right, oncoming)
were manipulated within subjects. The dependent variables of
interest were misses (failures to detect targets) and detection
distance (the distance between the participant and the target
when it was detected). Longer detection distances were equiv-
alent to shorter response times. We analyzed distance instead
of response times because there were no discrete trials; targets
moved in and out of view continuously. Responses registered
after the participant had passed the target (i.e., a detection
distance less than 0) were coded as misses. This accounted
for fewer than 0.2 % of the responses.

Results

Misses

Misses were extremely rare; most observers (55 %) detected
all of the targets, and only one observer missed more than 4 %
of the targets. Given this, the statistical analyses focused on
detection distance. Although the participants made few mis-
ses, those misses that did occur were not random. Nearly all of
the missed targets were gray buses or motorcycles, particular-
ly oncoming vehicles and those located on the right.

Detection distance

Detection distance was analyzed using an omnibus within–
between analysis of variance (ANOVA), with Preexposure
Drive and Detection Drive as between-subjects factors and
Target Vehicle, Location, and Color as within-subjects factors.
Not all of the participants were included, due to missing data
(e.g., if no detection distance was recorded for one stimulus
category due to missed low-prevalence targets). To ensure that
the same pattern of results remained across the full data set,
multiple comparisons were run utilizing all possible partici-
pants. These results matched those of the original ANOVA, so
only the omnibus-analysis results are presented.

Effects of vehicle type and prevalence We found a significant
main effect of vehicle type [F (1, 25) = 334.11, p < .0005,
η p

2 = .93] and a significant interaction between vehicle type and
prevalence in the detection drive [F(1, 25) = 208.10, p < .0005,
ηp

2 = .89]. Buses were detected from farther away than motor-
cycles, but both vehicle types were detected from farther away
when theywere high prevalence, as compared towhen theywere
low prevalence (see Fig. 1).

A main effect of preexposure drive also emerged
[F (1, 25) = 5.21, p = .031, η p

2 = .17], but no inter-
action between preexposure drive and subsequent target
prevalence [F (1, 25) = 0.83, p = .370]: Participants
who completed the bus preexposure drive were faster
at detecting targets overall. Specifically, the detection
of high-prevalence buses was improved by preexposure
to buses (see Fig. 2), although this effect appeared to
be greatest during the first 13-km block of the detec-
tion drive. The motorcycle preexposure drive did not
significantly improve detection of motorcycles.
Preexposure drive did not interact with any of the other
variables (F s < 2.1, p s > .13, for all comparisons).

Effects of vehicle location and color We observed a main
effect of vehicle location [F (2, 50) = 27.73, p < .0005,
η p

2 = .53]; drivers detected vehicles on the left (M =
206.29 m, SE = 5.81) farther away than those that were
on the right (M = 181.19 m, SE = 5.06) or oncoming
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(M = 182.65 m, SE = 4.88). This was probably due to
the fact that vehicles on the left were never obscured by
oncoming traffic (which passed on the right, consistent
with local driving laws). We also observed a main effect
of vehicle color [F(1, 25) = 691.26, p < .0005, ηp

2 = .97];
high-salience white vehicles (M = 231.31 m, SE = 5.13) were
detected from farther away than low-salience gray vehicles
(M = 148.79 m, SE = 4.95).

Interactions Several two-, three-, and four-way interactions
were statistically significant; these are summarized in Table 1.
In summary, these interactions occurred because the size of
the target prevalence effects varied with vehicle type, color,
and location (see Fig. 3). Significant prevalence effects were
obtained for all target types except one: oncoming white
motorcycles. For all other stimulus types, increasing target
prevalence increased the distance at which observers could
detect the target, with the largest effects occurring for white
buses. It appears that performance was close to ceiling for
oncoming white motorcycles in the low-prevalence condition,
so increasing target prevalence did not facilitate detection.
Anecdotally, several observers commented that these targets
were particularly salient and that “all motorcycles should be
painted white.”

Prevalence effects for red lights?

Although our research focus was on prevalence effects for
vehicle detection, our results suggested another possible prev-
alence effect: for red traffic lights. To avoid unnecessary
stopping (which would increase the risk of simulator sick-
ness), nearly all of the traffic lights were green. This created a
situation in which drivers implicitly expected all of the lights
to be green, even though they had been explicitly instructed to
stop at red lights. Four drivers (10 %) failed to stop at the first
red light; one completely failed to notice the red light, and the
other three noticed too late to stop. Several other drivers
noticed the red light just before the intersection and had to
brake heavily in order to stop. To eliminate the possibility that
failing to stop was due to speed, we compared the drivers’
speeds 100m before the first red light (i.e., just before the light

Fig. 1 Detection distances for buses and motorcycles as a function of
target prevalence in the detection drive. The effects of target prevalence
are demonstrated where the detection distance is significantly higher for
the high-prevalence than for the low-prevalence target. Error bars repre-
sent ±1 SEM

Fig. 2 Detection distances for buses and motorcycles as a function of target prevalence in both the detection drive (left vs. right lines) and preexposure
drive (x-axis categories). The effects of preexposure drive are demonstrated where the lines are not flat. Error bars represent ±1 SEM
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changed) and found no difference in speed between the drivers
who stopped and those who failed to stop, t(38) = 1.22, p =
.23. All of the drivers noticed the second red light, and only
one (the same driver who failed to notice the first red light)
noticed too late to stop.

Discussion

In the present study, we investigated whether prevalence
effects occur in dynamic visual search tasks, such as while
driving. Contrary to previous research on search prevalence
effects, we found a very low rate of misses. This was most
likely due to the interactive nature of the simulated driving
task; drivers moved gradually closer to the targets and even-
tually passed directly by them, after which point the targets
remained visible in the simulator’s rear-view and side mirrors.
Other studies investigating prevalence effects have used static
images that were displayed on screen until observers made a
response; in such studies, the mean response times could be
anywhere from 500 to 8,000 ms, with response times above
10,000 or 15,000 ms typically being considered outliers. In
the present study, the targets were theoretically visible for up
to 500 m (30 s, assuming a cruising speed of 60 km/h) before
the driver reached them, so it is not surprising that most
drivers eventually detected all of the target vehicles.

We did find a significant effect of prevalence on response
times, with observers being able to detect high-prevalence
targets from significantly farther away than low-prevalence
targets. This result cannot be attributed to the physical

characteristics of the targets, since the effect occurred across
a range of stimulus varieties, nor to failures to search in
appropriate locations, since the low- and high-prevalence
targets appeared in the same locations. The effect size for the
prevalence effect was very large, although not as large as the
effects of vehicle type (bus vs. motorcycle) or color (white vs.
gray). This indicates that although increased prevalence im-
proves target detection, it does not override the effects of
physical salience. When examining the results by vehicle
type, location, and color, the prevalence effect occurred for
all but one target type: oncoming white motorcycles. It ap-
pears that performance was close to ceiling for this target type
in the low-prevalence condition,1 meaning that detection
could not be improved by increasing prevalence. For all
other stimuli, increasing target prevalence facilitated de-
tection, as indicated by significantly longer detection
distances (faster response times) for high-prevalence
than for low-prevalence targets with identical physical
characteristics. This is consistent with previous research,
in that target prevalence has been found to influence
detection (Evans et al., 2011; Wolfe et al., 2005; Wolfe
et al., 2007), and also that we have found experience
with a visual stimulus to diminish the importance of
physical salience in attentional capture (Humphrey &
Underwood, 2009).

Table 1 Summary of significant interactions between vehicle type, location, color, and detection drive (prevalence)

Interaction Significance Effects

Location × Vehicle F(2, 50) = 3.88, p = .027, ηp
2 = .13 Effect of location larger for buses than for motorcycles.

Location × Vehicle × Detection F(2, 50) = 19.15, p < .0005, ηp
2 = .43 For high-prevalence targets, oncoming vehicles hardest to detect.

For low-prevalence targets, vehicles on the right hardest to detect.
Effect larger for buses than for motorcycles.

Vehicle × Color F(1, 25) = 85.30, p < .0005, ηp
2 = .77 Effect of salience larger for buses than for motorcycles.

Vehicle × Color × Detection F(1, 25) = 6.83, p = .015, ηp
2 = .22 For buses, prevalence effects larger for white targets.

For motorcycles, prevalence effects larger for gray targets.

Location × Color F(2, 50) = 11.62, p < .0005, ηp
2 = .32 For white targets, oncoming vehicles hardest to detect.

For gray targets, vehicles on the right hardest to detect.

Location × Color × Detection F(2, 50) = 14.07, p < .0005, ηp
2 = .36 White targets detected faster than gray targets.

In bus drive, color effect largest for targets on the right.
In motorcycle drive, color effect largest for targets on the left.

Vehicle × Location × Color F(2, 50) = 73.76, p < .0005, ηp
2 = .75 For white buses and gray motorcycles, oncoming vehicles hardest

to detect and left vehicles easiest.
For gray buses, right vehicles hardest to detect and
oncoming vehicles easiest.

For white motorcycles, left vehicles hardest to detect and
oncoming vehicles easiest.

Vehicle × Location × Color × Detection F(2, 50) = 14.26, p < .0005, ηp
2 = .36 Refer to Fig. 2.

1 Although the detection distance for this condition (192 m) was consid-
erably lower than that for buses, it can be considered almost ceiling
performance because the relative size of the motorcycle at this distance
is 0.45º×0.30º visual angle. An equivalent detection distance for buses, in
terms of relative stimulus size, would be approximately 425 m.
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Although participants were explicitly instructed to search
for both buses and motorcycles, it appears that observers’
attention was biased toward whichever vehicle was more
prevalent during the detection drive, and this bias affected
their ability to recognize low-prevalence targets. This is con-
sistent with a recent theory of attentional control, which ar-
gued that three factors influence whether a stimulus will
capture attention: physical salience , which can lead to invol-
untary attention capture; the observer’s current goals , which
allow participants to voluntarily direct attention on the basis of
task demands; and selection history, which prioritizes items
that have previously been attended or associated with rewards
(Awh, Belopolsky, & Theeuwes, 2012). All of the search
targets in the present study were consistent with the current
goals, but they varied in terms of their physical salience (i.e.,
size, color) and selection history (i.e., prevalence), both of
which influenced detection.

Our results have implications for theories regarding target
prevalence effects. Previous research has been based on static
images that observers had to inspect in order to decide whether
a given target was present or absent. Because these tasks
required an explicit decision on each trial, researchers have
framed their understanding of prevalence effects in terms of
this response, and in particular have focused on how varying
target prevalence affects the observer’s quitting threshold
(Wolfe&VanWert, 2010). The concept of a quitting threshold
does not seem relevant to our paradigm, since observers never
“quit” a trial; they were required to search continuously
throughout the drive. Moreover, since prevalence was manip-
ulated within subjects, at any given time the observers were
searching for both high- and low-prevalence targets, and they

performed significantly better at detecting high-prevalence
targets. The fact that both types of targets appeared in the
same fixed locations means that our results are also unlikely to
be due to terminating search before fixating the target location,
since targets only ever appeared in three locations. Rather, it
seems that varying target prevalence affected observers’ inter-
nal decision criteria, such that they were faster at registering
“target present” responses for high-prevalence targets. Be-
cause the task did not require a present–absent judgment, it
was not possible to do signal detection analyses, but in a
standard signal detection paradigm this might be reflected by
a change in sensitivity, in addition to the changes in criterion
that have been observed in research on prevalence effects
(e.g., Schwark et al., 2013; Schwark et al., 2012; Wolfe &
Van Wert, 2010).

Schwark et al. (2013) differentiated between prevalence-
and search-based decisions, arguing that the former are based
on the statistical probability of the target appearing, and the
latter on perceptual evidence. One explanation for our results
is that observers based their internal 2AFC decisions on both
prevalence- and search-based information. When targets had
low prevalence, participants needed more perceptual evidence
to be confident that a given object was a target, whereas when
targets had high prevalence, participants could make a target-
present judgment with less perceptual information. This is not
a prevalence-based decision of the type that Schwark et al.
(2013) described, since accuracy was near ceiling; rather, it
appears that observers were able to use prevalence informa-
tion to make faster judgments about some targets. It seems
plausible that these types of effects would occur in real-world
settings, particularly under time pressure. The paradigm used

Fig. 3 Detection distances for buses and motorcycles as a function of
target prevalence, color, and location in the detection drive. The effects of
target prevalence are demonstrated where the detection distance is

significantly higher for the high-prevalence target as compared to the
low-prevalence target of the same type, color, and location. Error bars
represent ±1 SEM
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in the present study is relatively unique, in that because the
images were dynamic and the targets moved closer to the
observer, waiting longer actually did ultimately provide more
physical and perceptual information that the observer could
use to make a judgment.

In addition to the theoretical implications, our results have
practical importance. In particular, they suggest that drivers’
difficulty with perceiving motorcyclists is partially due to the
fact that motorcycles are relatively rare, and drivers do not
expect to see them.Whenmotorcycles had high prevalence, as
compared to low prevalence, they were detected on average
51 m farther away. At a driving speed of 60 km/h, this allows
drivers an extra 3 s to respond. Given that artificially increas-
ing the prevalence of motorcycles on the roads is not a
practical solution (compared to medical screening, in which
this type of manipulation is theoretically possible), in future
research it would be worthwhile exploring other methods of
eradicating prevalence effects.

Overall, it appears that increasing the prevalence of a visual
search target can effectively temporarily increase its salience
within the visual environment. The results of the present study
are consistent with previous research on target prevalence
effects, but importantly, they expand on that research by
demonstrating that robust prevalence effects can occur during
dynamic and interactive tasks, such as driving, and for tasks in
which observers do not have to make an explicit present–
absent judgment. This research also has profound practical
implications, since it suggests that the incidence of many
perceptual errors while driving may be due to drivers’ expec-
tations about the types of vehicles that they are most likely to
encounter on the road.
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